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Executive Summary 

Connected and automated vehicle (CAV) technology has the potential to radically change mobility in the 
foreseeable future. The unique features of CAVs, including but not limited to wireless telecommunication 
and highly automated driving behavior, can affect the performance of current transportation systems, create 
entirely new modes of transport, affect the various activities and travel decisions of households and 
individuals, or all three.  

To more clearly identify these impacts, this project developed a conceptual framework for an analysis, 
modeling, and simulation (AMS) system for evaluating the impacts of CAV technologies on transportation 
facilities at the strategic and operational levels, providing the basis for future development of CAV-enabled 
evaluation tools. The objective of this project is twofold: (1) to lay a foundational framework for the 
development of AMS system that includes connected and automated vehicles, and (2) to engage in small 
scale CAV AMS development using this framework that encourages future development activities, toward 
a vision where practitioners have CAV-aware tools available.  

The comprehensive CAV AMS framework developed through this project includes four main components 
that provide the core for an envisioned CAV AMS system. Those include: 

• Supply Changes: to analyze the emergence of new mobility options enabled by CAVs and the 
changes incurred by the new technology to the infrastructure. 

• Demand Changes: to evaluate CAV impacts on activity and travel choices. 

• Operational Performance: to evaluate the impacts of the technology on the performance of 
transportation systems, such as increased capacity and improved travel time. 

• Network Integration: to capture the multi-agent interactions at the network level. 

The framework addresses three types of gaps identified in existing CAV AMS capabilities: methodological 
gaps, data-related gaps, and implementation gaps. Methodological gaps were addressed by integrating the 
missing CAV-related features, such as multitasking and the new robotic behavior, into the different modeling 
components of the framework. Data-related gaps, which require collecting more data on the actual behavior 
of CAV systems, were addressed by allowing the models to be updated or replaced once new data or 
models as they become available. Finally, implementation gaps were addressed by integrating supply, 
demand, and operational components into an AMS platform. 

The selected case study focuses on the operational performance impacts of CAV systems in a mixed traffic 
environment (i.e., CAVs, human drivers, and trucks) at different market penetration rates for the technology. 
To do so, the study uses an integrated traffic-telecommunication microsimulation tool that was developed 
at Northwestern University as a testbed. The microsimulation platform is a special-purpose tool for 
simulating mixed traffic conditions on freeways in a connected environment. It integrates four distinctive 
driving behaviors: isolated-manual, connected-manual vehicles (CV), isolated-automated vehicles (AV), 
and connected and automated vehicle (CAV).  
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Using the aforementioned testbed, three sets of scenarios were evaluated. Those scenarios analyze the 
following: 

• The performance of mixed traffic flow. 

• The impact of AV sensor performance on mixed traffic flow. 

• The impact of connected and automated truck platooning on mixed traffic flow. 

The mixed traffic flow simulations show that connectivity and automated driving can improve traffic flow 
throughput, stability, and travel time at high market penetration rates. The AV sensor performance 
simulations show that distance measurement error has insignificant impact on the performance of traffic 
flow in the case of low AV market penetration. Connected and automated truck platooning simulations show 
that active platooning can lead to higher traffic throughput due to trucks driving at shorter distances (i.e., 
headway) in platoons. Platooning, however, seems to have an insignificant impact on overall travel time. 
The truck platoons formed under the assumed opportunistic platoon formation strategy are of small size (2-
4 vehicles) and short duration (mostly less than 50 sec). Under the opportunistic strategy, connected trucks 
activate platooning behavior only if they are following other connected trucks. Due to the generally small 
number of trucks on highways (< 20 percent), forming platoons under this strategy could be difficult, 
especially over short distances. 
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 Chapter 1. Introduction 

Connected and automated vehicle (CAV) technology has the potential to radically change mobility in the 
foreseeable future. The unique features of CAVs, such as wireless telecommunication and robotic driving 
behavior, would not only affect the performance of transportation facilities on the tactical level but also 
impact travel decisions at the household level, the available mobility options, and infrastructure 
development at the strategic level. Therefore, evaluating the far-reaching impacts of the new technology 
requires the holistic approach taken by the project team to analyze those impacts on multiple levels. 

It is useful first to identify, conceptually, the key phenomena and dimensions that uniquely differentiate CAVs 
from existing technologies normally captured in available analysis, modeling, and simulation (AMS) tools. 
This forms the basis for examining the extent to which existing models might capture the demand and 
performance characteristics of CAVs to develop a comprehensive AMS system (1). Some of the key 
differentiating features include the following:  

• CAVs have different performance characteristics and enable different service levels for a given
infrastructure.

• System performance is dependent on specific technological features, market penetration rates, as
well as degrees of deployment of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications for connectivity.

• On the supply side, entirely new supply and service delivery options may emerge—namely various
forms of mobility as a service with shared fleet utilization.

• On the demand side, the likelihood of major activity shifts at the household level increase, the value-
of-time changes due to multitasking, and mobility use changes.

Existing CAV AMS capabilities, which were assessed in previous task documents (2-4), have been 
developed primarily to address specific research questions regarding certain impacts of CAV systems rather 
than providing a toolkit capable of addressing the breadth and depth of issues of concern to agencies 
engaged in planning and operating transportation systems. To that end, this project aims to lay the 
foundation for an integrated AMS system capable of evaluating both the strategic and operational impacts 
of CAV systems on transportation networks. This envisioned system, initially discussed in the Task 3 reports 
(5; 6), will help guide future research and development of CAV AMS capabilities. 

Connected Vehicle Systems 
Connected vehicle technologies offer the opportunity to create an interconnected network of moving 
vehicular units and stationary infrastructure units in which individual vehicles can communicate with other 
vehicles (i.e., V2V communication) and other agents (e.g. a centralized traffic management center through 
V2I communication) in a collaborative and meaningful manner. The real-time information provided by V2V 
and V2I improves drivers’ situational awareness and enhances the safety and efficiency of operating 
vehicles. This information also improves the reliability of the traffic system by supporting online monitoring 
and dynamic management while providing data for both online operations and offline planning applications. 
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As envisioned by the United States Department of Transportation (USDOT) Connected Vehicles Program, 
this connected environment serves three main purposes: improving safety, enhancing mobility, and 
reducing emissions (7; 8). Connected vehicle technology is expected to address 81 percent of all imminent 
crashes by improving drivers’ situational awareness (9) while reducing or eliminating congestion, 
decreasing energy consumption, and lessening the negative environmental effects of driving (i.e., by 
reducing emissions and greenhouse gases).  

From a traffic operations perspective, a key focus of connected vehicle systems is to enable coordinated 
strategies that improve the quality of flow along highways and at intersections, including speed 
harmonization, cooperative adaptive cruise control, and queue warning (10). In general, the more vehicles 
are connected together, the greater the opportunity for coordinated interventions to improve the quality and 
reliability of flow. In an urban setting, connected vehicle technology enables more responsive operation of 
traffic controls, especially traffic signals, and more efficient sharing of right of way by different types of 
vehicles, including transit vehicles along priority corridors. Connectivity is also envisioned to enable more 
effective demand management by integrating information to and from travelers into the overall system and 
improving the overall user experience and multimodal mobility.  

The Internet of Things and Smart Cities 
Beyond the immediate scope of transportation systems, the notion of an internet of things (IoT) in which 
machines, objects, people, and vehicles of all types are interconnected is also relevant to the overall 
mobility picture. At the level of an urban area, the data and systems integration envisioned under an IoT 
results in so-called “smart cities,” where a web of connected sensors of all types combined with shared 
data platforms enable efficiencies across urban services in different sectors; e.g. education, health care, 
electric power, water, in addition to mobility services (11; 12). In terms of personal urban mobility, the quality, 
scope, and relevance of real-time information would contribute to reducing waiting times for transit services, 
enable reservation and payment for parking spots at congested locations, simplify access across a 
spectrum of urban modes such shared bikes and vehicle fleets, facilitate seamless access to airports and 
major terminals, and so on. For users, this means greater convenience; for cities and operators, greater 
efficiencies and better utilization of resources; and for society, more livable and environmentally sustainable 
cities.  

Connected cities with shared data platforms and intelligent processes that leverage the data offer a range 
of opportunities for end users (city dwellers, travelers), system operators, and managers as well as a 
plethora of potential services by third parties. The availability of large data streams from various public and 
private sources, and having the ability to reach consumers almost instantly through mobile connected 
devices, creates many new opportunities for entrepreneurial third parties to improve existing services or 
offer entirely new categories of services and experiences, including in the realm of both person and goods 
mobility. From a research perspective, a variety of new problem classes arise in connection with the 
availability of these data streams, for both online system operation and service delivery as well as offline 
characterization of the demand for mobility and related services. In summary, connectivity and the very 
existence of the IoT increase opportunities for users, for the overall system, and for third parties.  

One of the substantial hurdles for achieving the kind of integration envisioned under smarter urban systems, 
as it is for connected vehicle systems, is the sheer requirement for intra- and inter-agency coordination and 
process redesign that may be more difficult to accomplish in certain cities than in others. For connected 
traffic systems, the mission-critical nature of both the telecommunication and the control systems required 
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to maintain safe operation calls for levels of sophisticated coordination that are not typical in existing 
operations. Hence, the vision of the connected vehicles program, like the emerging vision for smart 
connected cities, may have gotten way ahead of any implementation. The difficulty in achieving the public-
private commitment to deploy has, in part, motivated the emergence of entirely automated vehicles, or self-
driving cars, discussed next.  

Automated Vehicles 
The popular media has been replete with images of automated, or driverless, cars over the past few years, 
especially the “Google car”—the well-publicized entry into the vehicular realm by the technology giant. The 
vision is certainly not new, and one can find examples of images depicting cars driving themselves while 
the occupants engage in work or recreational activities as far back as the 1930s (13; 14). However, 
advances in computing, robotics, and artificial intelligence have enabled near road-worthy vehicles, 
prompting serious efforts in the regulatory, legal, and insurance spheres pertaining to the entry of such 
vehicles into everyday utilization. 

The primary classification of driving automation systems is based on the division of roles between the 
human operator and the automation system. SAE (15) has defined five such levels, in addition to specifying 
a “zero automation” level in which the human driver drives normally, but may be assisted in maintaining 
safety by warning systems or control systems that intervene for short periods of time with braking or steering 
actions (such as yaw stability systems or anti-lock brakes). Those levels are: 

• Level 1 – Driver Assistance.

• Level 2 – Partial Driving Automation.

• Level 3 – Conditional Driving Automation.

• Level 4 – High Driving Automation.

• Level 5 – Full Driving Automation.

Automated vehicle capabilities are often discussed in conjunction with connected vehicle systems, although 
the two are, in effect, distinct. The former is envisioned as the ability to drive with no external assistance, 
possible through extensive sensing and massive intelligence fully residing within the vehicle. All these 
functions could be enhanced through connectivity; e.g., when neighboring vehicles and/or the infrastructure 
convey messages to other vehicles about respective locations, road features, or control displays. Additional 
coordinated strategies could thus be enabled to further enhance safety and flow quality. However, in that 
case, more of the intelligence resides in the infrastructure, or the vehicle-infrastructure system, rather than 
residing exclusively within individual vehicles. These factors have important implications for deployment, 
coordination, vulnerability, and resilience of the associated system. Most notably, connected vehicle 
systems require a much greater degree of coordination amongst auto manufacturers and traffic 
management authorities (generally public sector), whereas Level 4/5 automated (also called autonomous) 
vehicles are envisioned as being fully self-sufficient (given the existing physical infrastructure). 

Several studies of both automated and connected vehicles were conducted in the 1990’s (16-21), and more 
recently in the past 5 years (22-25), to investigate the flow properties of vehicular traffic streams with varying 
fractions of automated and/or connected vehicles. While these properties will be determined by the specific 
technologies and how they are implemented (e.g., the specific logic by which a driverless vehicle would 
follow other vehicles, change lanes, and so on), the sensors used, the pattern recognition algorithms, and 
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the interaction protocols for vehicles with different levels and types of technologies, investigations to date 
suggest meaningful improvement in most flow performance indicators. Nonetheless, these studies have 
been limited to simulation-based analyses with some field information from small-scale technology 
demonstrations. Hence considerable additional effort is required to fully ascertain the flow impacts of these 
technologies for specific deployment scenarios. 

Scope of Project 
To evaluate the potential impacts of CAV technologies, transportation agencies must be equipped with the 
necessary tools to predict the impacts of those technologies in order to support decision making at the 
planning and operational levels. This project aims to build a conceptual framework for an AMS system for 
evaluating the impacts of CAV technologies on transportation facilities at the strategic and operational 
levels, providing the basis for future development of CAV-enabled evaluation tools. 

Objective 
The objectives of this project are twofold: (1) to lay a foundational framework for the development of an 
AMS system that includes connected and automated vehicles and (2) to engage in small-scale CAV AMS 
development using the framework to encourage future development activities and advance a vision in which 
practitioners have CAV-aware tools available. 
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Chapter 2. A Comprehensive 
Methodological Framework for 
Connected and Automated Vehicle 
Analysis, Modeling, and Simulation 

The implications of connected and automated vehicle (CAV) technology are far reaching at both the 
strategic and operational levels, yet those impacts are interdependent (26). On the strategic level, the 
technology will potentially affect the supply of mobility services, demand patterns, and travel behavior. On 
the operational/tactical level, the technology can potentially improve traffic flow performance on 
transportation facilities and networks. 

CAV technology is expected to help introduce entirely new modes of mobility (27; 28)—in the form of 
shared-automated-vehicle (SAV) fleets, for example—in addition to improving multiple aspects of current 
mobility options. Such improvements include highly automating certain driving tasks (or all of them) from 
origin to destination and supporting travel-related decisions by providing real-time information through 
wireless telecommunications. 

The availability of new mobility forms in addition to the improvements to current transportation systems 
through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity can affect the activity 
patterns (29-33) and the mobility choices of travelers (34; 35). Those changes can involve household-level 
decisions, such as owning a car, or individual decisions, such as departure times and route choices (36).  

Changes to both supply and demand, in addition to the improvements to traffic flow brought by connectivity 
and automation, ultimately affect the operational performance of transportation systems. The potential 
improvements include, for example, increased throughput (20; 37-42) and improved safety through 
incorporating real-time information (43-46) on prevailing traffic conditions and the addition of a safer 
automated driving behavior (17; 22; 47-50). 

To that end, this section introduces a comprehensive framework for evaluating the strategic and operational 
impacts of CAV technology on transportation facilities, illustrated in Figure 1. The framework includes four 
main components: 

1. Supply Changes to analyze the emergence of new mobility options enabled by CAVs and the
changes incurred by the new technology to the infrastructure.

2. Demand Changes to evaluate CAV impacts on activity and travel choices.
3. Operational Performance to evaluate the impacts of the technology on the performance of

transportation systems, such as increased capacity and improved travel time.
4. Network Integration to capture the multi-agent interactions at the network level.



 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 
 

8 |  Development of an AMS Framework for Connected and Automated Vehicle Systems 

The main components of the framework are interrelated and, therefore, should be integrated into a 
comprehensive analysis, modeling, and simulation (AMS) system for an improved evaluation of CAV 
impacts. The remainder of this chapter discusses the four main components and their integration within a 
CAV AMS system
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Figure 1. A methodological framework for evaluating the strategic and operational impacts of connected and automated vehicle 
technology. 
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Demand Changes 
The new forms of mobility (27; 28) enabled by CAV technology and their expected improvements to the 
performance of transportation systems could lead to fundamental changes to the transport-related 
decisions. Those changes could affect 1) the activity patterns (29-33) and 2) the mobility choices of travelers 
(34; 35) at multiple levels, as illustrated in Figure 2. 

© 2018 Hani Mahmassani 
Figure 2. The demand changes component of the general connected and automated vehicle 

analysis, modeling, and simulation framework. 

Activity Patterns 
On the higher level, the potentially improved features of the new mobility options can impact the activity 
patterns of households and businesses. One key feature of highly automated vehicles is enabling 
multitasking during vehicle operation, which would make time that is usually lost in driving a productive one. 
For example, travelers can do their work while being driven to their office. Thus, the value of individuals’ 
travel time might change as travelers may not mind spending more time moving in a vehicle. In addition, 
having a robotic “chauffeur” to assist in daily chores can reprioritize activities in the household. For instance, 
highly automated vehicles could pick up kids from school or groceries from the store. 

Other characteristics of the new technology, such as potentially greater safety and lower cost of SAVs, 
could affect other high-level decisions, such as owning a vehicle (51-55). Households may require fewer 
owned vehicles since those vehicles can drive themselves and efficiently serve multiple members of those 
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households. The new shared-automated service may eliminate the need to own a vehicle altogether if the 
service proves to be reliable and affordable. Vehicle ownership by businesses can also be affected by 
automated vehicle technology. With safer, more efficient, and more sustainable distribution, businesses 
may require fewer vehicles to deliver goods to their clients. They might also share automated vehicles for 
delivery to achieve higher utilization and lower costs. 

Travel Choices 
On the tactical level, some of the new features of automated vehicles (AVs)—mainly the ability for 
passengers to multitask during the trip—can affect individual trip decisions (36) as to mode choice, route 
choice, and departure time, among others. The usual assumption is that human drivers choose travel routes 
that minimize their travel time according to the best information they have available. However, travel times 
are dynamic, depending on prevailing traffic conditions, and may not be readily available to non-connected 
drivers at the time they choose their routes. Connectivity can affect route choice in several ways. One way 
would be for connected vehicles to act as probes to traffic conditions and share that information with other 
connected vehicles. This would enable more accurate estimates of travel times and shortest routes. Another 
way would be for automated or connected vehicles to reroute themselves while moving towards a 
destination based on developing traffic conditions, which can lower costs and travel time. 

As for mode choice, connectivity allows for new mobility tools and better intermodal integration. Travelers 
would be able to use multiple modes conveniently; for example, using public transit and a shared-
automated-vehicle (SAV) service. Users may also shift to entirely different modes, like solely using SAVs 
instead of driving personal vehicles or taking transit.  

Departure times can also be affected by CAV technologies. With less variable travel times, travelers may 
not need to leave much earlier than they should to account for unforeseen delays. Additionally, travelers 
living in the same household can share an automated vehicle and coordinate their departure times. For 
example, parents can send their children to school in the highly automated car while getting ready to leave 
for work before the car comes back. 

Integrating the Demand Changes Component within a Connected and 
Automated Vehicle Analysis, Modeling, and Simulation System 
The objective of the Demand Change component in the general framework is to predict activity patterns 
(i.e., trips, origins and destinations (ODs), and routes) and travel choices (i.e., modes, departure times) 
influenced by CAV technology and new mobility options, as defined in the scenarios produced from the 
Demand Changes component (see Figure 2). The demand changes component, which includes trip 
duration, mode choice, and timing, will be predicted using robust demand models within which the 
multitasking feature is explicitly integrated. 

Changes in demand, such as longer trip durations, a greater number of trips, or different paths chosen for 
the trip, influence the demand flows used in performance models to evaluate the new system’s attributes 
in the presence of CAV technology at the operational level. The new attributes (e.g., travel time, comfort, 
and reliability) produced by performance models (e.g., dynamic traffic assignment tools or microsimulation) 
will update mode characteristics in demand models and reproduce demand flows. The loop of updating 
demand flows and system attributes, which is exchanged between demand and performance models, stops 
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when a convergence criterion or criteria is met. Examples of such criterion include activity schedule 
consistency and improvement in travel time. 

Supply Changes 
The major supply changes expected from the deployment of CAV systems are 1) new mobility options and 
services and 2) infrastructure modifications to enable wireless telecommunications. The new mobility 
services will mainly be in the form of a shared automated vehicles (SAV) and hybrid systems enabled by 
SAVs (53; 56; 57). New mobility services also includes automated truck systems, potentially resulting in 
disruptive impacts to the trucking industry (58). The aforementioned changes are captured in the supply 
component of the CAV AMS framework as illustrated in Figure 3. 

© 2018 Hani Mahmassani 

Figure 3. The supply changes component of the general connected and automated vehicle 
analysis, modeling, and simulation framework. 

 

 

 
 

New Mobility Options 
The rapid development in wireless telecommunication technologies and the high adoption rate of those 
technologies have enabled radically new forms of mobility and opportunities for multi-mode integrations 
that were not possible or thought of less than 20 years ago. Most AMS tools, for example, failed to predict 
current ride-hailing services, such as Uber and Lyft, which were only enabled by advancements in 
positioning, telecommunication, and handheld computing technologies. 
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The recent advancements in the areas of artificial intelligence, robotics, CAV systems, and the Internet of 
Things (IoT) will probably cause even more radical changes to the forms of mobility that travelers are used 
to. Aside from the extremely futuristic modes such as flying cars or the Hyperloop,1 the most anticipated 
mode enabled by the aforementioned technologies is SAV fleets. 

SAV fleets or their hybrid systems will play a key role in expanding mobility-as-a-service (Maas) and creating 
integrated forms of mobility in the future. For example, a new mode can be an integrated transit-SAV system 
where the latter serves as a first/last mile connection. While shared vehicle fleets are not an entirely new 
form of mobility, transport network companies (TNC) such as Uber and Lyft already offer this service. SAV 
have two main differentiating features: (1) the automated driving behavior of vehicles is different from the 
human driving behavior, and will likely impact the overall performance of the system, and (2) the mobility 
service owner would have full control over the system, unlike services using human drivers, and can 
optimize the service to serve different objectives, such as minimizing costs or maximizing quality. These 
two features have the potential to increase the SAV market share and competitive advantage against other 
modes. 

Furthermore, connectivity can enable better integration of multiple modes for improved mobility. One 
specific case is public-private partnerships to solve the first/last mile problem of access to transit systems. 
Through a connected platform, for example, TNCs can integrate their services with transit systems to 
provide better accessibility and more convenient transfers. Consequently, improving transit services 
through such partnerships can increase ridership and potentially reduce the need to use private cars. 

In addition to personal mobility, the logistics industry could be one of the early adopters of automated vehicle 
technology, as it promises improved safety, sustainability, and efficiency of goods movement (58). Using 
automated trucks improves safety by reducing human errors. As for sustainability, automated truck 
technology can lower emissions by potentially improving fuel consumption. Finally, in the long term, highly 
automated trucks can increase operational efficiency because machines, unlike drivers, do not need breaks 
during or between trips. 

Infrastructure Changes 
The second major supply impact as a result of CAV technology deployment is the potential change to the 
infrastructure to enable wireless telecommunications. This unique feature of CAV systems is often missing 
in existing CAV AMS capabilities. Reliable wireless telecommunication is both essential for the operation of 
CAV technologies and can affect the driving behavior of CVs. Most AMS tools, especially SAV fleet models, 
assume that all vehicles are connected and the central dispatcher has full information regarding the location 
of all vehicles, requests, origins, and destinations. This may not be the actual case in practice. 

Furthermore, V2I technology, depending on the technology type, is likely to be deployed in strategic 
locations due to its high costs. This will impact the operations of SAV fleets that rely on a central dispatcher 
to assign vehicles. Furthermore, wireless telecommunications, even the most advanced technologies to 
date, may not be reliable at all times. The system may suffer from outages, disconnections, or poor signals, 

                                                      

1 A hyperloop is a theoretical transportation system that would propel bullet-like pods over long distances through steel 
tubes using magnetic levitation and vacuum pumps to abate friction and air resistance, allowing the bus-sized pods to 
travel at speeds approaching Mach 1. 
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especially at severe weather conditions. Similar reliability issues involve the positioning of vehicles such as 
lost GPS signals inside tunnels. 

For the abovementioned reasons, having an abstract representation of wireless telecommunications in CAV 
AMS systems is important for providing a realistic representation of new mobility options and evaluating the 
impacts of telecommunications reliability on driving behavior. In this methodological framework, wireless 
telecommunication technologies (V2I, V2V, and vehicle-to-everything (V2X)) are integrated within the 
network representation. The representation would include communication ranges that affect the information 
flow between connected agents (travelers, vehicles, and infrastructure).  

Integrating the Supply Changes Component within a Connected and 
Automated Vehicle Analysis, Modeling, and Simulation System 
Three main aspects of mobility supply changes would need to be addressed in an AMS system intended to 
examine CAV impacts: (1) predicting the emergence of specific services (and their characteristics), along 
with shifts in the transit system, (2) generating optimal plans to operate these fleets and services, and (3) 
evaluating the impact of these services on the transportation system.  

The first of the above aspects is beyond the capability of any tool and is one of the main gaps in existing 
CAV AMS capabilities. The second aspect is what most studies have focused on (59) by building special-
purpose simulation tools (54; 56; 60; 61) to answer questions related to managing SAV fleets, such as the 
number of vehicles required, travel time, costs, etc. The third aspect is achieved by integrating the first two 
aspects with the demand component in an AMS system to evaluate the impacts at a network level.  

As developing a full capability to predict emerging mobility option can be a very complicated process, the 
supply changes component in the CAV AMS system should allow the analyst to define multiple operational 
scenarios for new modes and the wireless telecommunication technologies in place, whether it’s V2I, V2V, 
or V2X communications. Those scenarios will be based on current and predicted market trends; technology 
development; regulations; and, ultimately, expert judgment.  

The assumptions about supply changes are integral to evaluating demand changes and operational 
performance. As illustrated in the framework in Figure 1, the defined scenarios will determine the availability 
of new modes, their characteristics, and the type of new telecommunication technology in place. Those 
assumptions will define the system configuration, regardless of its scale (network, corridor, or a facility), 
based on which demand changes and operational performance will be evaluated. As a result, defining those 
scenarios will reduce the uncertainty related to the impacts of the new technology. 

Operational Performance 
The most direct impact of CAVs on network performance will result from the operational performance 
characteristics of the vehicles in the traffic stream, and the control algorithms enabled by and deployed with 
varying degrees of V2V and V2I connectivity (18). CAV systems are expected to improve different 
performance aspects (62) of transportation systems, including safety (9; 63), mobility (1; 7), and 
sustainability (64). The technology promises to reduce accidents that are caused by human error, improve 
road capacities by driving safely at higher densities (65), and improve traffic control whether on freeways 
(17; 37; 38; 41; 42; 49; 66) or intersections using advanced wireless telecommunication technologies (19; 
67-78). While greatly dependent on decisions made in the commercial marketplace, public agencies, and 
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regulatory bodies, understanding and modeling these impacts under a given set of assumptions about 
technological features, deployment scenarios, and control measures is an essential AMS requirement that 
lies mostly in the realm of traffic physics. 

To fully capture the traffic impacts of CAV systems, AMS models should capture the heterogeneous 
interactions between different driving behaviors. First, there will be isolated manual drivers who have 
relatively higher reaction times and risks of driving errors (e.g., new drivers, older drivers). Second, there 
will be connected and well-informed drivers who are more aware of their surroundings and presumably with 
better reactive behavior. Finally, there will be the new driving behavior with the introduction of highly 
automated vehicles, which can also be connected through wireless telecommunications. This behavior 
would heavily depend on the equipped sensors and the control algorithms installed by car manufacturers 
in addition to the supplementary information that can be received through connectivity.  

The operational performance component of the envisioned CAV AMS system is an integrated traffic-
telecommunication simulation platform that can simulate mixed traffic conditions under different operational 
assumptions and scenarios. The performance component, illustrated in Figure 4, includes four types of 
driving behaviors: (1) isolated-manual, (2) connected-manual, (3) isolated-automated, and (4) connected-
automated. It also includes a wireless telecommunication component that specifies the performance of the 
communication systems relevant to transportation system performance. Finally, the tool includes a 
component to simulate heterogeneous interactions among the different driving behaviors (depending on 
the assumed connectivity/automation levels) and the implemented control algorithms.  

As inputs to the integrated simulation platform, the framework includes demand patterns and the system 
configuration, which are outputs of the strategic-level analysis as discussed in the general framework 
(Figure 1). In addition, external factors (e.g., weather), logic for controlling automated vehicles, and the 
agency’s communication protocols are considered in the integrated simulation platform. Finally, the 
simulation tool outputs both pre-defined and user-defined performance measures to evaluate the impacts 
of CAV technology on the system’s performance. The remainder of this section discusses the major 
components of the performance simulation tool in further detail.  
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Figure 4. The operational performance component of the general connected and automated 
vehicle analysis, modeling, and simulation framework. 

Wireless Telecommunication and Sensors 
The CAV AMS modeling system needs to provide for an appropriate level of representation for the effects 
that the enabling technologies for CAVs will have on the behaviors of the automated vehicles and their 
interactions with the transportation management functions. The most important of these technologies are 
the telecommunications and environment-perceiving (sensing) technologies, but these are also closely 
coupled with positioning technologies. These technologies typically function on time scales much shorter 
than the time scales associated with vehicle motions, but that does not mean that they need to be modeled 
at those very short time scales (which would have adverse consequences for computational efficiency). 
The phenomena that influence their performance are often very different from the phenomena that are 
represented in transportation network models (for example, ambient lighting conditions and atmospheric 
conditions that affect radio wave propagation and visibility, including disturbances such as electrical storms 
and sunspots). These considerations point toward the need for simplified models focused on the aspects 
of sensor and communication system performance that directly influence vehicle performance. 

Connected Manual Driver Behavior 
Connectivity extends drivers’ perception of their surrounding environment beyond the visual scanning 
capabilities of isolated drivers, theoretically leading to more responsive driving behavior (25). Depending 
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on the type of communication, V2V and V2I provide different information to drivers and affect their behavior 
accordingly. V2V provides information on vehicle movement and location, such as speed and acceleration 
of downstream vehicles, which increases drivers’ awareness of downstream traffic conditions and improves 
their responsiveness (lower reaction time). V2I, on the other hand, provides information on road conditions, 
weather, and TMC decisions (e.g., express lanes), which influence the drivers’ strategic decisions about 
route choice and departure time.  

Because of the above-discussed influences of connectivity on driving behavior, the proposed Performance 
Simulation Tool explicitly distinguishes between the two manual driving behaviors (connected vs. isolated) 
and uses different acceleration/lane changing formulations to model them. 

Automated Driving Behavior 
A great diversity of driving automation systems will have to be represented by the CAV performance 
simulation tools since the systems under development and consideration vary widely from each other. The 
main dimensions that can be used to characterize driving automation systems include: 

1. Society of Automotive Engineers (SAE) levels of automation – a system that defines which roles 
are performed by the automation system and which roles are performed by humans. 

2. Degree of coordination or cooperation – is the system autonomous or does it rely on V2V, I2V, or 
more general V2X information? 

3. Operational design domain (ODD) – the specific conditions under which the driving automation 
system is designed to function, including roadway type, traffic conditions and speed, geographic 
locations (boundaries), weather and lighting conditions, condition of pavement markings and 
signage, availability of other necessary supporting infrastructure features, etc. 

Different Automation Levels, Different Connectivity Levels 

The levels of automation are defined precisely in the SAE J3016 Recommended Practice document (15). 
This is an important reference that all modelers and designers of automated systems should study. The 
simplified version of the SAE J3016 classification criteria can be distilled into the answers to the following 
questions: 

1. Does the driving automation system perform either the longitudinal or the lateral vehicle motion 
control task in a sustained fashion, but not both?  If yes, it is a Level 1 system. Many of these are 
already available to the public (such as adaptive cruise control or lane tracking systems). 

2. Does the driving automation system perform both the longitudinal and lateral vehicle motion control 
tasks in a sustained fashion simultaneously?  If yes, it is at least a Level 2 system. Some Level 2 
systems are already available on premium vehicles and many more are under development, but at 
this level they still require the driver to continuously monitor the system performance and the driving 
environment for potential hazards. 

3. Does the driving automation system also perform object and event detection and response?  If yes, 
it is at least a Level 3 system. At this level, drivers can temporarily divert their attention away from 
the dynamic driving task to perform other tasks (such as reading or web surfing), but they need to 
be available to resume driving when the system requests help. None of these systems have been 
brought to the market yet, and there is controversy within the industry about whether it is possible 
to make such a system safe. 

4. Does the driving automation system also perform the dynamic driving task fallback function, 
ensuring recovery from all internal faults or external hazards without requiring driver intervention?  
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If yes, it is at least a Level 4 system. Some of these systems may not require any driver if their 
operation is confined to locations where the Level 4 operations can be guaranteed to function all 
the time (such as airport people movers in physically protected rights of way). A wide range of Level 
4 systems are under development, but the critical aspect that needs to be defined clearly is the 
unique operational design domain for each system. 

5. Is the driving automation system limited to operations within a specific operational design domain 
(ODD)? If it is not limited by an ODD, but is capable of driving safely under the full range of 
conditions in which humans can drive safely, it is a Level 5 system. That is a very long-range 
prospect, not something that needs to be planned for within the foreseeable future. 

The level of automation of any specific driving automation system determines which aspects of its behavior 
need to be modeled as automated and which aspects need to be modeled as normal human driving 
behavior (using baseline driver car-following or lane-changing models). 

Heterogeneous Traffic Interactions 
Different Automation Levels, Different Connectivity Levels 

The introduction of CAV on the road will lead to different types of drivers sharing the same transportation 
facility. To evaluate the flow impact of the traffic interactions among the heterogeneous driving styles, and 
since the actual CAV market share is a variable that can be chosen to have many different values, the 
performance simulation component should be able to simulate multiple scenarios at different CAV market 
penetrations. This would help planners and policy makers prepare for the impacts of CAV in the short and 
long-term as the market penetration of CAV is expected to start small and grow as the technology matures. 

Special Control Algorithms 

In addition to evaluating mixed traffic, the Performance Simulation Tool can be used to evaluate special 
control algorithms designed for the CAV environment. For example, the simulation tool can be used to 
evaluate a special speed harmonization algorithm that utilizes more accurate traffic volumes available 
through V2V communications and to send speed limit information directly to connected drivers instead of 
using fixed signs. Another example of a special algorithm is a queue warning system that uses vehicle 
locations through V2V communications to accurately detect queues and directly warn drivers upstream of 
queues instead of through fixed message signs.  

Performance Measures (Metrics) 
This subsection identifies the performance measures to be used in the Performance Simulation Tool to 
evaluate the impacts of CAV-technologies on operational performance. Six main categories of measures, 
summarized in table 1 are identified below (26): 

• Safety. 
• Throughput. 
• Flow Stability. 
• Flow Break-down and Reliability. 
• Sustainability. 
• User-defined Performance Measures. 
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Safety 

Safety is an essential factor in evaluating the impacts of CAV-technologies. As the majority of crashes are 
due to human error, automated vehicles have the potential to significantly decrease the number of crashes, 
specifically at high market penetration levels. Because crashes are rare events that are not predictable by 
operational models, this is the most difficult measure of effectiveness to assess with any fidelity. However, 
such assessments can be made through proxy measures such as the number of instances where an 
emergency deceleration is required or the time-to-collision (i.e., below some threshold). 

Throughput 

As discussed in previous sections, CAV technologies are expected to increase the flow throughput of 
transportation facilities by increasing flow densities. However, such impacts are dependent on the market 
penetration of those technologies. Throughput can be quantified by measuring the number of vehicles 
passing through a specific point per hour. 

Stability 

Flow stability refers to the traffic stream’s ability to recover its steady-state properties (density-speed) after 
incurring a perturbation. The study team found several stability indices in the literature that can be used in 
the Performance Simulation Tool.  

Flow Break-down and Reliability 

Flow-breakdown is a traffic phenomenon in which throughput drops due to a perturbation (e.g., accident or 
sudden braking). CAVs are expected to improve traffic flow reliability by providing a smoother, safer, and 
more responsive vehicle operation, but their interactions with manually driven vehicles are more 
complicated. The Performance Simulation Tool can use multiple measures to quantify CAV impact on flow 
breakdown and reliability such as (1) occurrence of shockwaves, and (2) severity of shockwaves formed. 

Sustainability  

The environmental impacts of CAV are uncertain. On one hand, smoother operations associated with CAV 
can lead to lower GHG emissions and energy consumption. On the other hand, the CAV impacts on travel 
demand are uncertain and could result in higher overall travel volume, which would increase emissions and 
energy consumption. The trade-offs between greater flow efficiency and greater demand requires further 
research. 

Calculating emissions and energy consumption is usually an offline process that uses data previously 
obtained by simulation (as in the case of the CAV Performance Simulation Tool) or observed data (79). 
Several methods are available in the literature for that purpose at different data aggregation levels. For the 
proposed Performance Simulation Tool, emissions and fuel consumption can be calculated using the speed 
profiles of vehicles (trajectories) at a high temporal resolution, which is obtained by the simulation platform. 
The proposed performance measures include carbon dioxide (CO2), nitrous oxides (NOx), particulate matter 
(PM) emissions, and the amount of energy consumed. 
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User-defined Performance Measures 

In addition to the performance measures pre-defined within the Performance Simulation Tool, users should 
be able to define and calculate their own measures using raw performance data generated by the 
Performance Simulation Tool. For example, users should have access to vehicle trajectory data, traffic 
control data, and communication messages to create their own visualizations or performance graphs. 

Table 1. Summary of proposed performance measures in the connected and automated vehicles 
performance simulation tool. 

Category Impact Performance Measure 

Safety Improve safety outcome 

Surrogate Safety Assessment, but will require 
new development work to define suitable 
measures of effectiveness (MOEs) for 
connected and automated vehicles (CAV). 

Throughput 
 
 

Traffic flow volumes Number of vehicles per hour per lane 
Smoothness of traffic flow Variability of speeds within traffic stream 
Corridor/ Intersection Capacity 
Utilization 

Green Occupancy Ratio 
Intersection Degree of Saturation 

Intersection Control Performance Control Delay 

Flow Stability Local stability Local flow stability index 
String stability Mixed-flow string stability index  

Flow Breakdown 
and Reliability 

Occurrence of traffic shockwaves Number of significant shockwaves formed 
Speed variance 

Severity of shockwaves 
Propagation speed of formed shockwaves 
relative to wave front 
Duration of shockwave-induced queues 

Sustainability Impact on GHG emissions Level of carbon dioxide, nitrous oxides, and 
particulate matter equivalent emissions 

Energy consumption Amount of energy consumed 
Source: FHWA 2018 

Network Integration 
Evaluating the network-wide impacts of CAV systems requires capturing the interactions of different agents 
in a network context. Those agents include CAVs, travelers, mobility service providers, transit and network 
managers, freight shippers, and carriers. To capture these interactions, model platforms that integrate 
various components relevant to the questions being asked are required. Platforms in this context are 
primarily conceptual analytical constructs that are embedded in a software tool. They typically entail a 
collection of models representing interacting agents or processes. In this case, the CAV AMS system would 
be a platform that integrates a collection of supply, demand, and performance models to represent the 
behavior of CAV systems and their impacts on transportation systems, as illustrated in Figure 5. Platforms 
also typically offer a foundation upon which additional capabilities may be built, albeit with varying degrees 
of difficulty and effort.  

 



© 2018 Hani Mahmassani 

Figure 5. The network integration component of the general connected and automated vehicle 
analysis, modeling, and simulation framework. 
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Chapter 3. Connected and Automated 
Vehicle Analysis, Modeling, and 
Simulation System Requirements 

This chapter identifies the analysis, modeling, and simulation (AMS) system requirements for 
evaluating the strategic as well as the operational impacts of connected and automated vehicle 
(CAV) technology on transportation facilities (Figure 6). Those requirements are based on the 
stakeholder’s need identified in the Concept of Operation and the survey conducted by 
stakeholders on modeling CAV technology. Four types of requirements are identified: 

• Functional requirements: related to the functions that should be included in each component
of the AMS system.

• Performance requirements: related to the performance of each component as well as the
whole system.

• Data requirements: related to data storage/generation of the system.

• Integration requirements: related to the integration of the main components of the system.



© 2018 Hani Mahmassani 

Figure 6. System requirements of the analysis, modeling, and simulation system. 

System Requirements for Evaluating the Strategic 
Impacts of Connected and Automated Vehicle Systems 

 

 

 
 

This section summarizes the high-level system requirements for evaluating the strategic impacts 
of CAV technology. Below is a description of the table’s columns: 

• Framework Component: groups the requirements according to the two main components in 
the strategic framework for evaluating CAV impacts: 1) Supply Changes and 2) Demand 
Changes. 

• Req. ID: the system requirement identification number. (Note: SC refers to Supply Changes 
while DC refers to Demand Changes.) 

• Req. Type:  As defined in Figure 6—Functional (F); Performance (P); Data (D); Integration (I). 

• System Requirement: description of the system requirement.  

• Notes: additional notes related to the system requirement. 

• Priority: related to the implementation of the requirement. Four priorities were identified:   
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1. A: Absolute (Essential). 
2. H: High. 
3. M: Medium. 
4. L: Low. 

 
Table 2. System requirements for evaluating the strategic impacts of connected and 

automated systems. 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Supply 
Changes 
  

SC-1 F 

The system shall 
predict/assume the 
characteristics of new 
mobility options enabled 
by CAV systems 

Examples of emerging 
modes include Shared-
Automated-Vehicle 
fleets and new 
multimodal options. 
Mode characteristics 
examples include cost, 
travel time, and 
comfort 

A 

SC-2 F 

The system shall update 
the characteristics of new 
mobility options as new 
information becomes 
available  

Example: actual data 
when emerging modes 
are operational 

A 

SC-3 F 

The system shall predict 
the area-availability of 
emerging mobility options 
and CAV technologies 

Examples: city center, 
urban, sub-urban, rural 
or specific parts of 
networks 

H 

SC-4 F 

The system shall define 
opportunities for new 
multimodal integrations 
enabled by CAV systems  

Example: Transit and 
Shared-Automated-
Vehicle fleets in city 
center 

M 

SC-5 F 

The system shall 
determine the type of 
wireless 
telecommunication 
technology to be used 
(V2V/V2I/V2X) and its 
location on the network 

Example: not all 
intersections or links 
on the network will 
have V2I 
communications, at 
least at the beginning 

A 

SC-6 F 

The system shall 
define/predict protocols for 
V2I/V2V/V2X 
communications  

Examples: 
communication range, 
frequency of 
information 
broadcasting, and 
amount/type of 
information 
stored/used for active 
control algorithms 

A 
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Table 2. System requirements for evaluating the strategic impacts of connected and 
automated systems. (continued) 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Supply 
Changes 
(cont’d) 
 

SC-7 P 

The system shall produce 
a network/transportation 
system configuration to be 
evaluated by the other two 
components of the system: 
Demand Changes and 
Operational Performance. 

The system 
configuration includes 
links/nodes and their 
characteristics (e.g. 
lanes, connectivity, 
etc.) 

A 

SC-8 P 

They system shall 
generate operational 
scenarios of emerging 
modes and CAV 
technologies to be 
evaluated by the other 
system components: 
Demand Changes and 
Operational Performance. 

This includes the 
operation of new 
modes on the network, 
initial market 
penetrations of CAVs, 
type of CAV systems 
deployed) 

A 

SC-9 D 

The system shall generate 
and store data on network 
configurations and 
operational scenarios of 
new modes in a format 
that is accessible by other 
system components. 

Examples: types and 
locations of wireless 
telecommunication 
technology on the 
network 

A 

SC-
10 I 

The system shall enable 
the generated system 
configuration and network 
characteristics to be 
accessible by demand 
models to evaluate activity 
patterns and travel 
behavior 

Examples: parts of the 
network where CAV 
systems are available 
and 
predicted/assumed 
characteristics of 
emerging modes 
(SAVs) 

A 

SC-
11 I 

The system shall enable 
the generated system 
configuration and network 
characteristics to be 
accessible by performance 
models to evaluate the 
system performance under 
the predicted supply 
conditions 

Examples: parts of the 
network where CAV 
systems are available 
and 
predicted/assumed 
characteristics of 
emerging modes 
(SAVs) 

A 
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Table 2. System requirements for evaluating the strategic impacts of connected and 
automated systems. (continued) 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Demand 
Changes 
 

DC-1 F 

The system shall integrate 
automated vehicles in the 
demand models used by 
this system/framework 

Automated vehicles 
have different 
characteristics from 
regular vehicles and 
demand models 
should reflect that 

A 

DC-2 F 

The system shall integrate 
emerging mobility options 
in the demand models 
used by the 
system/framework. 

Examples of emerging 
modes include Shared-
Automated-Vehicle 
fleets and new 
multimodal options 
(Transit + SAV). 

A 

DC-3 F 

The system shall integrate 
the multitasking feature 
enabled by highly 
automated vehicles. 

This is a unique 
feature that can affect 
activity patterns at 
households and 
businesses 

A 

DC-4 F 

The system shall assess 
the impact of CAVs on 
vehicle ownership at 
households and 
businesses. 

The ability to easily 
share automated 
vehicles may impact 
vehicle ownership 

H 

DC-5 F 

The system shall predict 
the change in the number 
of household trips at 
different market 
penetrations of CAV 
systems.  

With the ability to 
multitask while riding 
an automated vehicle 
service, for example 
work, people may 
travel to other places 
more often. 

H 

DC-6 F 

The system shall predict 
the change in the purpose 
of trips generated from 
households at different 
market penetrations of 
CAV systems. 

Example: the change 
in work or personal 
trips 

H 

DC-7 F 
The system shall predict 
the change in trip 
durations by CAV modes. 

Example: longer 
durations because of 
multitasking during  
trip. 

H 
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Table 2. System requirements for evaluating the strategic impacts of connected and 
automated systems. (continued) 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Demand 
Changes 
(cont’d) 

DC-8 F 
The system shall predict 
the change in trip 
chains/sequencing 

Example: changes to 
the start, end, duration 
of trips and activities. 

H 

DC-9 F 

The system shall assess 
the impacts of a robotic 
“Chauffeur” on household 
activity prioritization and 
sequencing 

Some activities may go 
in parallel or their 
sequence may change 
using the new service  

M 

DC-10 F 

The system shall evaluate 
changes to in-vehicle/out-
of-vehicle value of time 
because of enabled 
multitasking in automated 
vehicles 

Example: value of in-
vehicle travel time may 
change as it's not 
totally lost as a result 
of enabled multitasking 
in an automated 
service 

M 

DC-11 F 

The system shall evaluate 
mode shifts including 
multimode use as a result 
of CAV systems. 

Example: shifts to 
multimodal options 
such as transit and 
SAVs. 

H 

DC-12 F The system shall asses 
land use impacts of CAVs. 

Example: potential 
shifts in residence 
location and/or 
businesses. 

M 

DC-13 F 

The system shall 
implement dynamic route 
choice based on detailed 
information obtained from 
CAVs. 

Connectivity enables 
more accurate 
estimation of traffic 
states that should be 
reflected in routing 
models 

H 

DC-14 F 
The system shall evaluate 
impacts of CAVs on 
departure times. 

Example: less variable 
departure due to lower 
uncertainty in traffic 
conditions 

M 

DC-15 F 

The system shall 
implement new data 
sources enables by 
connectivity as well as 
traditional data sources 

Examples of emerging 
data sources includes 
GPS and mobile data. 
Examples for 
traditional data 
sources include travel 
surveys. 

H 

DC-16 P 

The system shall produce 
traffic flows on the network 
to be simulated by 
performance models 

 None A 
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Table 2. System requirements for evaluating the strategic impacts of connected and 
automated systems. (continued) 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Demand 
Changes 
(cont’d) 

DC-17 P 

The system shall produce 
summary reports of trip 
durations, numbers, 
purposes generated by 
the transportation system 
under study. 

 None H 

DC-18 P 

The system shall produce 
comparative reports of 
CAVs impacts on trips and 
mode choice at different 
market penetrations 

 None H 

DC-19 P 

The system shall produce 
trip and activity 
information in raw format 
so that users can perform 
their own analysis 

 None H 

DC-20 D 

The system shall have the 
ability to import all types 
of data required for the 
analysis of travel behavior 
and activity patterns 

Examples of data 
required includes: 
activity logs, travel 
surveys, socio-
demographic surveys, 
and land use. 

A 

Demand 
Changes 
(cont’d) 

DC-21 I 

They system shall enable 
the generated demand 
flows and mode choices 
to be accessible by 
performance models to 
evaluate the new 
system's attributes in the 
presence of CAV 
technology at the 
operational level  

 None A 

Source: FHWA 2018 
A = absolute (essential). CAV = connected and automated vehicle. D = data. F = functional. H = 
High. I = Integration. M = Medium. P = performance. SAV = shared automated vehicle. V2V = 
vehicle to vehicle. V2I = vehicle to infrastructure. V2X = vehicle to anything. 
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System Requirements for Evaluating Operational 
Performance Impacts of Connected and Automated 
Vehicle Systems 
 
Table 3 summarizes the high-level system requirements for evaluating the operational/tactical 
impacts of CAV technology. Below is a description of the table’s columns: 

• Framework Component: groups the requirements according to the main components of the 
conceptual framework for evaluating the operational performance impacts of CAV systems 
(see Figure 1). 

• Req. ID: the system requirement identification number. (Note: OP refers to Operational 
Performance.) 

• Req. Type:  As defined above—Functional (F); Performance (P); Data (D); Integration (I). 

• System Requirement: description of the system requirement  

• Notes: additional notes related to the system requirement 

• Priority: related to the implementation of the requirement. Four priorities were identified:   

1. A: Absolute (Essential). 

2. H: High.  

3. M: Medium. 

4. L: Low. 

 
Table 3. System requirements for evaluating the operational performance impacts of 

connected and automated vehicle systems. 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Wireless 
Telecom. and 
Sensors 
  
  
  
  
  

OP-1 F 

The system shall 
integrate information flow 
through V2I/V2V/V2X 
communications within 
the AMS system at a 
practical time scale 
associated with the time 
scale for vehicle motion. 

Example: message 
broadcasting at 
microscale level 
(0.1 seconds) 

A 

OP-2 F 

The system shall model 
different communication 
network structures for 
different 
telecommunication 
technologies. 

Examples: point to 
point, ad-hoc, and 
structured network. 

H 
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Table 3. System requirements for evaluating the operational performance impacts of 
connected and automated vehicle systems. (continued) 

Framework 
Component Req. ID 

Req. 
Type System Requirement Notes Priority 

Wireless 
Telecom. and 
Sensors 
(cont’d) 
  
 

OP-3 F 

The system shall model 
different clustering 
patterns of CAVs based 
on wireless 
telecommunication 
networks 

Examples: number 
of vehicle clusters 
formed, number of 
vehicles within 
clusters, ranges of 
those clusters, and 
frequency of 
updating those 
structures. 

H 

OP-4 F 

The system shall model 
sensor performance and 
reliability aspects that 
directly influence vehicle 
performance  

Examples: radar 
range, positioning, 
interruptions, 
packet delivery 
rates, and 
connection latency. 

A 

OP-5 F 

The system shall model 
the uncertainty 
associated with CAV’s 
sensor performance. 

Examples: 
probabilistic 
distributions rather 
than point 
measures. 

M 

OP-6 F 

The system shall 
integrate as required 
V2X communications to 
include other connected 
road users 

Examples: 
pedestrians and 
Bicyclists 

M 

Isolated-
Manual Driver 
Behavior 

OP-7 F 

The system shall 
integrate state-of-the-art 
models to represent car-
following behavior 
(acceleration choice) of 
isolated human drivers 

 None A 

OP-8 F 

The system shall 
integrate state-of-the-art 
models for representing 
lane-changing behavior 
of isolated human drivers 

 None A 

OP-9 F 

The system shall have 
the ability to update 
behavioral models of 
isolated-manual drivers 
(car-following and lane 
changing) as improved 
models becomes 
available or new data 
becomes available 

Example: update 
car-following 
models 

A 
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Table 3. System requirements for evaluating the operational performance impacts of 
connected and automated vehicle systems. (continued) 

Framework 
Component Req. ID 

Req. 
Type System Requirement Notes Priority 

Isolated-
Manual Driver 
Behavior 
(cont’d) OP-10 F 

The system shall have 
the ability to 
calibrate/recalibrate 
model parameters of 
isolated-manual driving 
based on actual 
trajectory data. 

 None A 

Connected-
Manual Driver 
Behavior 
 
 

OP-11 F 

The system shall 
integrate state-of-the-art 
models to represent car-
following behavior 
(acceleration choice) of 
connected human 
drivers, distinct from 
isolated driving behavior. 

 None A 

OP-12 F 

The system shall 
integrate state-of-the-art 
models for representing 
lane-changing behavior 
of connected human 
drivers, distinct from 
isolated driving behavior. 

 None A 

OP-13 F 

The system shall have 
the ability to update 
behavioral models of 
connected human drivers 
(car-following and lane 
changing) as improved 
models becomes 
available. 

 None A 

OP-14 F 

The system shall have 
the ability to 
calibrate/recalibrate 
model parameters of 
connected-manual 
driving as actual 
trajectories become 
available 

 None A 

OP-15 F 

The system shall model 
the different effects of 
telecommunication 
technologies on 
connected drivers. 

Example: effect of 
vehicle movement 
information via V2V 
vs. the effect of 
traffic condition 
information via V2I 

H 
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Table 3. System requirements for evaluating the operational performance impacts of 
connected and automated vehicle systems. (continued) 

Framework 
Component Req. ID 

Req. 
Type System Requirement Notes Priority 

Connected-
Manual 
Driver 
Behavior 
(cont’d) 

OP-16 F 

The system shall integrate 
basic attributes for 
modeling the effectiveness 
of connected systems. 

Examples: driver 
compliance rate, 
driver response 
delay, and driver 
response accuracy. 

A 

OP-17 F 

The system shall have the 
ability to update 
effectiveness attributes of 
connected systems as 
actual data become 
available 

Example: data 
obtained from 
connected vehicles 
on the road or 
simulated 
connected driving 
environment 

H 

Isolated-
Automated 
Driving 
Behavior 
 

OP-18 F 

The system shall integrate 
state-of-the-art models to 
represent car-following 
behavior (acceleration 
choice) of the different 
levels of automated driving 
behavior (Level 1, 2, ..., 5) 
without communication 
capabilities. 

 None A 

OP-19 F 

The system shall integrate 
state-of-the-art models for 
representing lane-
changing behavior of the 
different levels of 
automated driving behavior 
(Level 1, 2, ..., 5) without 
communication 
capabilities. 

 None A 

OP-20 F 

The system shall have the 
ability to update the robotic 
driving behavior as more 
information about the 
control algorithms used in 
automated vehicles 
becomes available 

Example: control 
logic used by 
OEMs. 

A 

Connected-
Automated 
Driving 
Behavior  

OP-21 F 

The system shall integrate 
state-of-the-art models to 
represent car-following 
behavior (acceleration 
choice) of the different 
levels of automated driving 
behavior (Level 1, 2, ..., 5) 
with communication 
capabilities. 

 None A 
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Table 3. System requirements for evaluating the operational performance impacts of 
connected and automated vehicle systems. (continued) 

Framework 
Component 

Req. 
ID 

Req. 
Type System Requirement Notes Priority 

Connected-
Automated 
Driving 
Behavior (cont’d) 

OP-22 F 

The system shall integrate 
state-of-the-art models for 
representing lane-
changing behavior of the 
different levels of 
automated driving 
behavior (Level 1, 2, ..., 5) 
with communication 
capabilities. 

 None A 

Heterogeneous 
Traffic 
Interactions 

OP-23 F 
The system shall model 
multilane interactions 
among drivers. 

Examples: moving 
to restricted lanes 
or HOV lanes. 

A 

OP-24 F 

The system shall simulate 
mixed-traffic conditions for 
different CAV market 
penetrations and capture 
the interactions among 
different driving behaviors. 

Example: simulate 
the interactions of 
connected, 
automated, and 
human vehicles 
on the road 

A 

OP-25 F 

The system shall simulate 
various operational 
interventions, traditional 
and emerging via CAV 
systems. 

Examples of such 
interventions 
include speed 
harmonization, 
queue warning, 
ramp metering, 
and HOV lanes. 

A 

OP-26 F 

Simulate the interactions 
between drivers (isolated, 
connected, and 
automated), pedestrians, 
and bikers at signalized 
intersections. 

 None H 

OP-27 F 

The system shall simulate 
emerging traffic signal 
control algorithms that use 
data generated from CAV 
systems.  

Example of such 
control systems 
include Eco 
Approach and 
Departure, 
Emergency 
Vehicle 
Preemption, and 
Transit Signal 
Priority. 

A 
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Table 3. System requirements for evaluating the operational performance impacts of 
connected and automated vehicle systems. (continued) 

Framework 
Component Req. ID 

Req. 
Type System Requirement Notes Priority 

Heterogeneous 
Traffic 
Interactions 
(cont’d) 

OP-28 F 

They system shall use 
new data sources 
obtained from CAV 
systems as well as 
traditional data sources 
(e.g. loop detectors) 

Examples of new 
data obtained by 
CAVs: detailed 
vehicle trajectories, 
speeds, and 
accelerations. 
Traditional data 
sources: counts 
from loop detectors 
and mean speeds 
from radars. 

A 

General 
 

OP-29 F 
The system shall 
evaluate all types of 
transportation facilities. 

Examples: 
networks, freeways, 
corridors, highways, 
and rural roads. 

A 

OP-30 F 

The system shall 
integrate external 
operational conditions 
and simulate their effect 
on the transportation 
system performance 
under different scenarios.  

The external 
operational 
conditions include: 
weather, incidents, 
special events, 
work zone, and 
saturated/high 
demand. 

A 

OP-31 P 

The system enable users 
to define different 
operational scenarios to 
be simulated 

Examples: market 
penetration, flow, 
external conditions. 

A 

OP-32 P 

The system shall 
produce multiple system 
attributes to evaluate 
CAV impacts 

Examples: travel 
time, reliability, and 
comfort. 

A 

OP-34 P 

The system shall 
produce multiple 
performance measures 
for evaluating CAV 
impacts,  

Examples: metrics 
related to safety, 
throughput, flow 
stability, and 
sustainability 

A 

OP-35 P 

The system shall 
produce raw 
performance data for 
users to calculate their 
own performance 
measures 

Examples: vehicle 
trajectory data, 
traffic control data, 
and communication 
messages. 

A 

OP-35 D 
The system shall store 
performance data of 
simulated vehicles 

Examples: vehicle 
trajectory data, 
traffic control data, 
and communication 
messages. 

A 
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Table 3. System requirements for evaluating the operational performance impacts of 
connected and automated vehicle systems. (continued) 

Framework 
Component Req. ID 

Req. 
Type System Requirement Notes Priority 

General 
(cont’d) 

OP-36 I 

The system shall 
integrate the demand 
patterns and network 
configuration produced 
at the strategic level to 
evaluate the operational 
performance impacts of 
CAVs 

Examples: 
communication 
technology and 
demand flows on 
the network 

A 

OP-37 I 

The system shall enable 
the generated system 
attributes to be 
accessible by demand 
models to update mode 
characteristics 

Example: travel 
time A 

Source: FHWA 2018 
A = absolute (essential). CAV = connected and automated vehicle. D = data. F = functional. H = 
High. I = Integration. M = Medium. P = performance. SAV = shared automated vehicle. V2V = 
vehicle to vehicle. V2I = vehicle to infrastructure. V2X = vehicle to anything. 
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Chapter 4. Review of Prior and 
Current Work 

This chapter provides an overview of related literature, reports, and planned activities relating to 
analysis, modeling, and simulation for connected and automated vehicles. The materials reviewed 
in this chapter serve to identify the main gaps in literature where current capabilities are insufficient 
or do not meet the user needs as identified in the Task 3 reports: Concept of Operations and System 
Requirements. (6; 80) 

Supply-related Impacts of Connected And Automated 
Vehicle Technology – Modeling Shared Automated 
Vehicle Fleets 
The new capabilities and attributes of connected and automated vehicles (CAVs) can create 
entirely new mobility options (26). One such option is shared automated vehicle (SAV) fleets. 
Shared-automated-vehicle systems, also known as e-Taxis, are a new form of mobility enabled by 
CAV technology. The system’s potential improvements over human-driven taxis and ride-hailing 
systems include lower costs (because driver-related expenses no longer apply) and a safer trip 
(because human error is eliminated from the driving process). In addition, for some travelers the 
new mode can remove the need for personal vehicles. 

Some papers in the literature studied SAV modeling as a special case of fleet management 
problems (59). Other papers proposed frameworks for modeling SAVs through event-based 
simulation (60; 61) or used network-level agent-based simulations (54; 56) to evaluate their 
impacts. Table 4 provides a summary of selected papers that are related to SAV modeling which 
are discussed in the remaining of this section.  

Table 4. Summary of papers related to shared-automated-vehicle modeling. 

Study Model Data/Testing Major Findings 

Hyland and 
Mahmassani (59) 

Taxonomy of shared-
automated-vehicle 
(SAV) management 
problems 

Conceptual, 
literature 

The automated vehicle 
(AV) fleet management 
problem is a dynamic, 
multi-vehicle pickup and 
delivery problem with 
explicit or implicit time-
window constraints 
wherein the isolated-
automated vehicles (AV) 
fleet manager has 
global information 
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Table 4. Summary of papers related to shared-automated-vehicle modeling. (continued) 
Study Model Data/Testing Major Findings 

Levin et al. (60) 

Event-based 
framework for 
modeling SAV 
vehicles where the 
first event introduces 
demand and the 
second event 
dispatch SAVs to fulfil 
that demand 

Network of Austin, 
Texas 

Using SAVs without 
dynamic ride-sharing 
increases travel time 
compared to personal 
vehicles and that 
effective routing 
heuristics and the right 
fleet size is required for 
SAV to effectively 
replace personal 
vehicles 

Fagnant and 
Kockelman (56) 

Agent-based 
simulation 

Network of Austin, 
Texas 

Dynamic ride sharing 
can reduce total service 
time and travel costs of 
SAV users, even after 
accounting for extra 
passenger pick up, drop 
offs, and non-direct 
routing 

Chen et al. (54) 
Agent-based 
simulation for shared-
automated-electrical 
vehicles (SAEV) 

Hypothetical 
gridded city 

The number of private 
vehicles that can be 
replaced by SAEVs 
depends on the electric 
vehicles range and the 
infrastructure charging 
speed 

Mendes et al. (61) 
Event-based 
simulation comparing 
SAV to light rail 

Proposed light rail 
line connecting 
Brooklyn and 
Queens in New 
York City 

Demand responsive 
shared-automated-
vehicle fleet of 150 
vehicle is required to 
replace the 39 cars of 
the light rail system and 
that the total travel time 
of the SAV is 36% less 
than that of light rail 

Source: FHWA 2018 

Hyland and Mahmassani (59) presented a taxonomy to classify vehicle fleet management problems 
to inform future research on automated vehicle fleets. The authors classified AV fleet management 
problems using existing categories in literature and included additional categories specific to 
automated vehicles. The taxonomy is summarized in Table 5. The first column in the table includes 
taxonomic categories existing in literature that were used in the paper to broadly define AV fleet 
management problems. The underlined categories in the table signify that the AV fleet management 
problem is a dynamic, multi-vehicle pickup and delivery problem with explicit or implicit time-window 
constraints wherein the AV fleet manager has global information. The second column shows other 
categories in the literature that are relevant to AV management fleets. The third column in the table 
shows novel taxonomic categories presented in the paper to classify AV fleet management 
problems. For more information on the taxonomic classifications, refer to the original paper by 
Hyland and Mahmassani (59). 
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Table 5. Taxonomy of automated vehicle fleet management problems. 
Existing Taxonomic Categories 

Novel Taxonomic 
Categories 

Classifying the General 
AV Fleet Management 

Problem 

Remaining Taxonomic Categories to 
Classify Specific AV Fleet Management 

Problems 
Pickup and/or Delivery 
• Pickups only 
• Deliveries only 
• Pickups and 

deliveries 
Evolution of Information 
• Static  
• Dynamic 

Availability of Information 
• Global 
• Local 

Time-Window 
Constraints 
• No time-windows 
• Explicit time-

windows 
• Implicit time-

windows 
• Explicit and implicit 

Size of Vehicle Fleet 
• One vehicle 
• Multiple vehicles 

 

Quality of Information 
• Deterministic 
• Stochastic 

Processing of Information 
• Centralized 
• Decentralized 

Vehicle Homogeneity  
• Homogenous 
• Heterogeneous 

Location of Demands 
• Nodes 
• Arcs 
• Mixed 

Arc Directionality 
• Directed 
• Undirected 
• Mixed 

Vehicle Capacity Constraints 
• Imposed all the time 
• Imposed some of the time 
• Not imposed 

Maximum vehicle route times (and 
distances) 
• Imposed – all the same 
• Imposed – not all the same 
• Not imposed 

Costs 
• Variable or routing costs 
• Fixed operating or vehicle acquisition 

costs (capital costs) 
Objective 
• Maximize profit 
• Minimize cost 
• Minimize client inconvenience 
• Minimize vehicle miles traveled 
• Minimize traveler wait time 
• Minimize traveler in-vehicle travel time 
• Minimize number of vehicles 

Fleet Size Elasticity 
• Elastic 
• Fixed Fleet Size 

Reservation Structure 
• Short-term rentals 
• Point-to-point service 
• Mixed 

Pricing 
• No pricing 
• Fixed pricing structure 
• Pricing, with no fixed 

structure 
Accept/Reject Decision 
• No decision 
• Fleet manager 

decision 
• Customer decision 

Reservation Timeframe 
• Immediate requests 
• Minimum pre-

reservation time 
• Mixed 

Repositioning 
• No repositioning 
• Repositioning based 

on stochastic 
information 

Underlying Network 
• Real road network 
• Test road network 
• Graph/Virtual Network 

Network Congestion 
• No congestion 
• Static 
• Time-dependent 

 

Source: Hyland, M. F., and H. S. Mahmassani. 2017. Taxonomy of Shared Autonomous Vehicle Fleet 
Management Problems to Inform Future Transportation Mobility. Transportation Research Record: 
Journal of the Transportation Research Board, 2653: 26-34. 
AV = isolated-automated vehicles. 
Note: Underlined categories in the table signify that the AV fleet management problem is a dynamic, 
multi-vehicle pickup and delivery problem with explicit or implicit time-window constraints wherein the 
AV fleet manager has global information. 
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Several studies explored different possibilities for modeling SAV fleets. Levin et al. (60) proposed 
a general framework for modeling SAVs that is built on two main events that can be integrated with 
most traffic simulation models: 1) demand and 2) SAV dispatcher. The demand module introduces 
demand into the simulation in the form of travelers requesting SAVs at each time step of the 
simulation. Those travelers can be either individuals or groups of people traveling together. The 
SAV dispatcher module assumes that a central dispatcher, with full information on all available 
SAVs through wireless telecommunication, assigns vehicles and routes to travelers. The dispatcher 
module outputs SAV trips passed to the simulation module. Finally, the traffic simulator module 
uses the SAV trips generated by the dispatcher and determines their arrival time at the destinations. 

The authors implemented the framework on a dynamic traffic assignment simulator and examined 
a scenario in which SAVs replace personal vehicles in the downtown Austin network. The results 
showed that using SAVs without dynamic ride-sharing (pooling multiple travelers with same origins, 
destinations, and travel times in the same vehicle) increases travel time compared to personal 
vehicles, and that a much larger fleet is needed for the AM period. However, dynamic ride-sharing 
significantly reduced travel time by combining travelers’ trips. Their conclusion was that, with 
effective routing heuristics and the right fleet size, SAVs could effectively replace personal vehicles. 

In another study, Fagnant and Kockelman (56) explored the potential impacts of dynamic ride 
sharing for a system of SAV using agent- and network-based simulation platforms. The authors 
tested their models on Austin’s network. Their results showed that dynamic ride sharing can reduce 
both total service time and travel costs for SAV users, even after accounting for extra passenger 
pick ups, drop offs, and non-direct routing. The results also showed that total VMT increases as 
SAV membership increases, and dynamic ride sharing (DSR) users become more flexible with 
timing and routing. 

Motivated by potential synergies between automated vehicles and electric vehicle technologies, 
Chen et al. (54) analyzed the operation of shared-automated-electric-vehicle (SAEV) systems 
using an agent-based simulation tool under various vehicle ranges and charging infrastructure 
scenarios in a gridded city. Their results showed that the number of private vehicles that can be 
replaced by SAEVs depends on the electric vehicles’ range and the infrastructure charging speed. 
For example, simulations showed that an SAEV with an 80-mile range can replace 3.7 privately 
owned vehicles while an SAEV with a 200-mile range can replace 5.5 privately owned vehicles 
under Level II (240-volt AC) charging. With fast charging (Level III, 480-volt DC), ratios increase to 
5.4 and 6.8 privately owned vehicles replaced by SAEVs with an 80-mile range and a 200-mile 
range, respectively.  

Furthermore, a financial analysis performed as part of the study implies that the SAEV service can 
be offered at an equivalent rate to privately owned vehicles for low-mileage households, making it 
a competitive alternative to current manually driven car sharing services and on-demand driver 
operated transportation services. As for vehicle miles traveled (VMT), results suggest that the 
SAEV service generated 7.1 percent to 14.0 percent additional VMT due to the need to travel empty 
miles for charging and passenger pick up. The percentages are lower, however, for cities with more 
concentrated origin-destination patterns, as in the case of Austin, Texas. 

In a related work, Mendes et al. (61) compared a SAV fleet system to a proposed light rail line 
connecting Brooklyn and Queens in New York City. The authors used an event-based simulation 
model to compare the performance of both systems under the same demand patterns and 
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operating speeds. Their results show that a demand responsive SAV fleet of 150 vehicles is 
required to replace the 39 cars in the light rail system and that the total travel time for the SAVs is 
36 percent less than that of light rail.  

Demand-related Impacts of Connected and Automated 
Vehicle Technology 
The new forms of mobility and enhancements that CAV technologies bring to current transportation 
systems could affect demand patterns on different levels. At the macro level, vehicle ownership in 
households will be affected as automated vehicle technology can make sharing vehicles more 
efficient and convenient. This can lower the number of vehicles needed by households or eliminate 
the need for it altogether, if the new service is proved to be reliable and financially competitive. 

At a moderately granular level, activity patterns of households can be affected by the new 
technology. Allowing multitasking while being driven in automated vehicles may change the value 
of in-vehicle time. People may travel longer distances as they would be able to do some tasks while 
driving, like working or watching a movie. Furthermore, having a robotic “chauffeur” to assist in daily 
chores can reprioritize activities in the household. For instance, highly automated vehicles could 
pick up kids from school or groceries from the store. 

At the micro level, travel routes, mode choice, and departure times can be affected by CAV 
systems. Connectivity, for example, can impact route choice through sharing traffic conditions 
between vehicles or between vehicles and the infrastructure, leading to better estimates of travel 
times and shortest paths. In addition, automated vehicles can dynamically reroute themselves as 
they receive more information about network traffic conditions. 

In addition to route choice, new mobility options will affect mode choice by travelers. As connectivity 
would allow better integration between modes, travelers may choose to use multiple modes 
simultaneously, like using ride-sourcing and transit, or shift entirely to different modes. 

To model demand changes caused by CAV technology, a different set of tools and frameworks from 
the traditional ones used to date must be developed. These tools need to incorporate new 
assumptions and behaviors related to CAV technology. Maren Outwater (1), in her review of such 
efforts, outlines different methods used by researchers for integrating CAV technology into models. 
Those include models of vehicle choice, strategy, activity-based models, and the four-step models. 
Those different methods are discussed further in the review of current/prior work in the following 
subsections.  

Forecasting Adoption of Connected and Automated Vehicle 
Technologies 
CAV systems promise significant improvements to road safety, mobility, and sustainability. As a 
result, researchers, manufacturers, and policy makers are all interested in forecasting the adoption 
of CAV systems to ensure that their decisions support future deployment of the new technology. 
However, forecasting the CAV adoption rate is a complex problem with many factors to consider 
on both the demand and the supply sides (81); for example, one such factor is the extent to which 
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travelers are willing to pay for new features and the technology price itself (81). Nonetheless, some 
researchers and industry professional have made various predictions about CAV technology 
adoption rates. 

Previous research predicted the adoption rate of the new technology and the characteristics of 
users who are likely to use it using different approaches. Some studies compared the deployment 
of CAV systems to previous new technology deployments—such as automatic transmission (27) 
and hybrid electric vehicles (28)—or used network-level simulations (81). Other studies conducted 
stated-preference surveys to characterize adopters of the new technology (35; 82). The differences 
show that high CAV adoption rates are not likely to occur before 2060 and that early adopters are 
likely to be young, educated, tech-oriented adults. Table 6 provides a summary of the selected 
papers discussed next. 

Table 6. Summary of selected studies on connected and automated vehicle technology 
adoption. 

Study Model Data/Testing Major Findings 

Litman (27) 

Comparison to 
previous 
vehicle 
technology 
deployment 

Historical data for 
previous technology 
deployment 

Connected and automated vehicle 
(CAV) market penetration will follow 
the automatic transmission 
deployment pattern, taking up to five 
decades to achieve saturation 
without a government mandate 

Lavasani (28) 
Generalized 
Bass diffusion 
models 

Historical sales of 
Hybrid Electric 
Vehicles in the US; 
Demographic data 

Assuming isolated-automated 
vehicle (AV) sales start in 2025, 
market will be saturated in 2059 

Bansal and 
Kockelman 
(81) 

Agent-based 
simulation 

U.S. survey on 
public acceptance 
of CAV  

98% of vehicle fleets in the U.S. will 
have connectivity in year 2030; light-
duty vehicle fleets will have 25%-
87% adoption rate by 2045 
depending on willingness to pay and 
cost of technology 

Lavieri et al. 
(82) 

Generalized 
Heterogeneous 
Data Model; 
Structural 
equations 

Puget Sound 
Regional Travel 
Study, 2014-2015 
 

Younger urban residents who are 
more educated and tech-savvy are 
more likely to be early adopters of 
automated vehicle technologies, 
favoring a sharing-based service 
model over private ownership 

Haboucha et 
al. (35) 

Logit Kernel 
choice model 
of autonomous 
vehicles 

Stated preference 
survey on 
autonomous 
vehicles 

Early adopters are likely to be young 
educated individuals who spend a 
lot of time in their vehicles 

Source: FHWA 2018 

Litman (27), in his report on automated vehicle implementation predictions, used previous vehicle 
technology deployments, such as airbags, automatic transmission, and hybrid vehicles, to project 
the implementation of CAV systems. Litman’s projections assumes that fully automated vehicles 
will be available for sale by 2020 for a high price and with imperfect technology. The market share 
will continue to go up as the technology becomes more mature and the price drops. The report 
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projects that high market penetration rates will follow the automatic transmission deployment 
pattern, taking up to five decades to achieve saturation without a government mandate. 

Adopting a similar concept but using a more rigorous quantitate approach, Lavasani (28) developed 
an AV market penetration model that is based on previous technology adoption trends including 
hybrid electric vehicles and cellphones. The authors used Generalized Bass diffusion models, a 
type of hazard functions, which calculates the probability that adoption will occur at specific year 
given that it has not yet occurred. To build the model, the authors selected two values representing 
the innovation factor (risk taking capacity) and the imitation factor (culture and life style preferences) 
and addition to external variables including estimated price of AV compared to regular vehicles and 
economic wealth. As for the market size, potential number of adopters, the authors assumed that 
75 percent of households’ potential adopters based on internet usage. Their results show that, 
assuming AV sales start in 2025, 1.3 million vehicles will be sold in next five years after sales start 
and that the number will increase to 36 million in 10 years. The model also shows that the market 
will be saturated in 2059 which confirms the projections of Litman (27). 

In another study by Bansal and Kockelman (81), the authors proposed a simulation-based 
framework to estimate the long-term adoption rates of CAV systems. The framework consists of 
multiple stages pursued together at a one-year interval. The first stage of the framework is vehicle 
transaction and technology adoption model that simulates households’ decisions to buy, sell, 
replace vehicles, or add CAV technology to old ones. In the following step, CAV technologies are 
added to vehicles if the price of the technology is less than the willingness to pay2 (WTP) among 
households. 

The authors used the fleet evolution framework to forecast Americans’ long term (2015-2045) 
adoption rates of CAV technology under different scenarios. The scenarios were defined based on 
annual technology price drops (5 percent, 10 percent) and annual increments in Americans’ WTP 
(0 percent, 5 percent, and 10 percent). The simulations were calibrated by data obtained from a 
survey of 2,167 Americans regarding their perception of CAVs and their household vehicle 
transactions. Their results suggest that 98 percent of vehicle fleets in the United States will have 
connectivity in year 2030 under NHTSA’s probable regulations. In addition, light-duty vehicle fleets 
will have a 25 percent to 87 percent adoption rate by 2045, depending on the assumed incremental 
change in WTP and decreases in price. 

Lavieri et al. (82) presented a comprehensive model system of autonomous vehicle adoption and 
use built on data collected as part of the Puget Sound Regional Travel Study. Their results showed 
that lifestyle factors play an important role in shaping autonomous vehicle usage. Younger urban 
residents who are more educated and tech-savvy are more likely to be early adopters of 
autonomous vehicle technologies, favoring a sharing-based service model over private ownership. 

Similarly, Haboucha et al. (35) built a choice model of autonomous vehicles to predict the adoption 
of the new mode using data collected from a stated preference survey in Israel and North America. 
Their results show that a large hesitation towards the new mode currently exists, with 44 percent 

                                                      

2 “Willingness to pay” is defined as the the most a consumer will spend on one unit of a good or 
service. See Market Business News, Financial Glossary (2018), s.v. “willingness to pay.”  
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of surveyed individuals choosing to use regular cars, while early adopters are likely to be young, 
educated individuals who spend a lot of time in their vehicles.  

Travel Mode Shifts due to Automated Vehicles 
The anticipated benefits and functionalities of highly automated vehicles can put this technology in 
a travel mode of its own. The new mode offers flexibility with origin-destination points in addition to 
providing passengers with the ability to multitask during the trip, making productive use of the time 
spent in transit. This new feature of being able to be productive while commuting in a private car 
may change perceptions and the value of time spent commuting (29). In addition, recent research 
(83) suggests that being driven by a robot can be less stressful than piloting a vehicle.  

The literature approached the question of mode shift by modifying existing demand models and 
adding highly automated vehicles as a new mode. The characteristics of the new vehicles, and the 
sensitivity of users to attributes like costs and time, were derived from other studies. The literature 
also performed sensitivity analyses using different assumed values. Table 4 provides a summary 
of selected papers that tried to answer questions regarding mode shift, which will be further 
discussed below. 

Table 7. Summary of selected studies on mode shift due to the introduction of connected 
and automated vehicle technology. 

Study Model Data/Testing Major Findings 
Childress et al. 
(83) 

Seattle region’s 
activity-based 
model 

Isolated-automated 
vehicles (AV) mode 
characteristics are based 
on findings of previous 
studies 

High AV market 
penetrations will reduce 
transit share by 9% and 
walk share by 21% 

LaMonida et al. 
(34) 

Trip generation 
and choice 
models 

Michigan State’s 2009 
Long-Distance Travel 
Survey 

Travelers equally shift 
from airlines and personal 
vehicles to automated 
vehicles by 25% - 37%. 

Perrine et al. (36) Modified travel 
demand model, 
rJourney 

long-distance trips 
traveled throughout the 
united states in 2010 

AV mode causes 53% shift 
in number of air trips 
towards the new mode 
and personal vehicles 

Source: FHWA 2018 

A study by Childress et al. (83) modified the Seattle region’s activity-based model to explore the 
potential travel impacts of automated vehicles. The study defined different scenarios based on 
expected improvements in road capacity and changes to perceived travel time and parking costs. 
Results showed that, in a scenario of high AV market penetration rates (modeled as a 30 percent 
increase in road capacity), impacts included a 65-percent reduction in perceived travel time and a 
5-percent reduction in parking cost. In terms of the distribution of travelers by mode, the result was 
a decrease in the transit share of around 9 percent and a decline in the pedestrian share of 21 
percent. 

Another study by LaMonida et al. (34) investigated potential long-distance travel mode shifts due 
to automated vehicles. To do so, the study analyzed the Michigan State’s 2009 Long-Distance 
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Travel Survey, developed a long-distance trip generation and mode-choice models, and applied 
those models in a statewide simulation experiment. The new AV mode in the models is assumed 
to have a lower perceived en-route travel time and higher cost, reflecting initial deployment of the 
new system. The simulation experiments highlighted potential mode shifts across different trip 
distances and purposes. The three modes analyzed were personal vehicles, airlines, and the newly 
introduced automated vehicles. 

Simulation results showed that for distances less than 500 miles, travelers equally shift from airlines 
and personal vehicles to automated vehicles by 25 percent to 37 percent. The shift percentage 
increases as travel distance decreases. Beyond 500-miles, the percentage shift to automated 
vehicles is consistently around 20 percent for personal vehicles, although it drops dramatically in 
favor of airlines as distances increase, indicating flying is still preferred for very long distance travel. 
The model also showed that as the AV costs increase and the perceived benefit over other modes 
decreases, the likelihood of shifting to the new mode decreases. Nevertheless, cost becomes less 
important as the perceived benefits in travel time increase. 

Perrine et al. (36) also studied potential mode shifts for long distance travel due to the availability 
of self-driving cars. The authors modified an existing travel demand forecasting model, rJourney, 
by adding AV as an additional mode in addition to rail, air, and private cars. The original model is 
based on 1.17 billion long-distance trips traveled throughout the United States in 2010. The results 
show that the addition of the AV mode severely affects air travel, with the number of trips dropping 
by 53 percent. The model also shows that the introduction of the AV mode affects the destination 
choice as the total miles traveled increased by 9.6 percent for personal vehicles while it was 
reduced by 6.7 percent for all other modes. 

Impact of Automated Vehicles on Vehicle Ownership 
One of the potential demand pattern changes entailed by the introduction of CAV-enabled mobility 
options is household vehicle ownership. The automated vehicle technology will make sharing 
vehicles more efficient and convenient (57). Households, therefore, may require fewer owned 
vehicles since those vehicles can drive themselves and efficiently serve multiple members of the 
households. Furthermore, new shared-automated service may even eliminate the need to own a 
vehicle all together if the service proves to be reliable and cost effective. This is indicated also by 
recent research on current car-sharing programs which shows that the service can potentially 
reduce vehicle ownership if users perceive it as a cost effective, environmentally friendly (84), and 
easily accessible option (51). Former studies tried to evaluate CAV impacts on vehicle ownership 
by directly asking travelers in the form of stated preference surveys (55) or by developing simulation 
platforms with SAV service (53; 54). Table 8 provides a summary of selected studies which are 
discussed next. 

Table 8. Summary of selected studies on CAV impacts on vehicle ownership. 
Study Model Data/Testing Major Findings 
Schoettle and Sivak 
(52) 

Descriptive 
analysis 

National 
Household 
Travel Survey 

43% reduction can be achieved in 
household vehicle ownership by 
sharing a vehicle for all non-
overlapping trips, which accounts 
for 84% of total household trips 
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Table 8. Summary of selected studies on CAV impacts on vehicle ownership. (continued) 
Study Model Data/Testing Major Findings 
Fagnant and 
Kockelman (53) 

Agent-based 
simulation 

Hypothetical 
gridded network 

One SAV can replace around 
eleven conventional vehicles 

Chen et al. (54) Agent-based 
simulation, 
Electric SAV 

Hypothetical 
gridded network 

An 80-mile range SAEV can 
replace 3.7 privately owned 
vehicles while a 200-mile range 
SAEV can replace 5.5 

Zmud et al. (55) Descriptive 
analysis 

Consumer 
acceptance 
survey and 
interviews 

61% of respondents in the study 
indicated that the number of cars 
they own won’t change if 
automated cars were available 
today 

Source: FHWA 2018 
SAEV = shared-automated electric vehicle. SAV = shared-automated-vehicle. 
 

In order to quantify the potential reduction in household vehicle ownership due to sharing 
automated vehicles, Schoettle and Sivak (52) analyzed the latest National Household Travel 
Survey data. They found that 83.7 percent of households had no trips that overlapped or conflicted, 
opening the possibility of reducing the number of vehicles owned by sharing an automated vehicle 
to serve those non-overlapping trips. In the most extreme hypothetical scenario, a 43 percent 
reduction can be achieved in household vehicle ownership by sharing a vehicle for all non-
overlapping trips, resulting in a 75 percent increase in vehicle usage (not including extra miles 
generated by the return-to-home trip). The authors stressed in their report, however, that many 
other factors affect the adoption of automated vehicles and that the above-mentioned numbers 
should be considered as upper bounds. 

In another study, Fagnant and Kockelman (53) designed an agent-based simulation model to 
evaluate the travel and environmental implications of SAV fleets for multiple operational scenarios. 
The model generates trips through a grid network, with each point assigned an origin, destination, 
and departure time. The model first estimates the number of SAVs required to serve generated 
trips then utilizes multiple routing strategies to minimize future travelers’ waiting time. The model 
was used to simulate multiple case studies with varying trip generation rates, network congestion, 
trip distribution, and service areas. Their initial results indicate that one SAV can replace around 11 
conventional vehicles; however, this adds around 10 percent more travel distance than comparable 
non-SAV trip. 

A study by Chen et al. (54) examined the operation of SAEV systems using an agent-based 
simulation model. Results showed that the number of private vehicles that can be replaced by 
SAEVs depends on the electric vehicles range and the infrastructure charging speed. For example, 
simulations showed that an SAEV with an 80-mile range can replace 3.7 privately owned vehicles, 
while an SAEV with a 200-mile range can replace 5.5 privately owned vehicles under Level II (240-
volt AC) charging. With fast charging (Level III, 480-volt DC), ratios increase to 5.4 and 6.8 privately 
owned vehicles replaced by SAEVs with an 80-mile range and with a 200-mile range, respectively.  

A recent report by Zmud et al. (55) on the consumer acceptance of automated vehicles shows that 
the majority of the 44 respondents interviewed (61 percent) in the study indicated that the number 
of cars they own would not change if automated cars were available today, whereas 23 percent 
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indicated that they would reduce the number of cars they own. A small but meaningful percentage 
(16 percent) indicated that they would increase the number of cars owned. 

Impact of Automated Vehicles on Vehicle Miles Traveled  
The new capabilities of highly automated vehicles can impact vehicle miles traveled (VMT) in a 
variety of ways. The ability of passengers to multitask during a trip in an AV may reduce the 
perceived (negative) value of time-in-travel for travelers, may make travelers less averse to longer 
trips, and therefore, increase overall VMT. Additionally, the chauffeur-like function of AVs may add 
more traveled distance if a vehicle, for example, travels back home after dropping off a traveler at 
the designated destination. Furthermore, the new technology may attract new types of travelers 
who cannot drive, like children and the elderly (30), adding even more trips to the network. SAVs 
can also travel longer distances due to the need to relocate between trips.  

Previous studies in the literature evaluate the impacts of AVs on VMT by modifying existing activity-
based models (83; 85), four-step models (33), or through agent-based simulation (54). Some 
studies examined the impacts qualitatively by relating the new technology to other technology 
deployments (27) or through stated preference surveys (55). While all of the studies agree upon 
the conclusion that AVs are likely to increase VMT, the amount of that increase differs among the 
studies. This is mainly due to the different assumptions made in the studies about the 
characteristics of the new mode, such as value of travel time, cost, and road capacity 
improvements. Therefore, most studies defined different scenarios in which AVs operate and 
predicted a range of VMT impacts.  

Table 6 provides a summary of selected studies on the AV impacts on VMT, which are discussed 
further later in the section. 

Table 9. Summary of selected studies on the impacts of automated vehicles on vehicle 
miles traveled. 

Study Model Data/Testing Major Findings 
Bierstedt et al. (31) Related the potential 

increase in VMTs to 
the improved driving 
experience enabled 
by automation 

NHTSA definitions of 
vehicle automation, 
judgement call 

35% VMT increase per 
capita at at 95% AV 
market penetration 

Litman (27) Comparison to 
previous vehicle 
technology 
deployment 

Historical data for 
previous technology 
deployment 

AVs are likely to 
increase VMT 

Childress et al. (83) Seattle region’s 
activity based model 

AV mode 
characteristics are 
based on findings of 
previous studies 

4% to 20% increase in 
total VMT depending on 
market penetration 

Kim et al. (85) Modified Atlanta 
regional activity 
based model 

AV mode 
characteristics are 
based on findings of 
previous studies 

3.6% to 23.9% increase 
in daily VMT depending 
on AV potential benefits 
to capacity and travel 
time, at 100 MPR  
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Table 9. Summary of selected studies on the impacts of automated vehicles on vehicle 
miles traveled. (continued) 

Study Model Data/Testing Major Findings 
Auld et al. (32) Modified POLARIS 

activity based model 
Chicago, Illinois 
network 

1% to 78% total VMT 
increase depending on 
the scenario and 
benefits assumed 

Zhao and 
Kockelman (33) 

Modified four-step 
model 

Existing model for 
Austin, Texas 

18% to 29% VMT 
increase depending on 
assumed value of time 
and operating costs 

Chen et al. (54) Agent-based 
simulation, Electric 
SAV 

Hypothetical gridded 
network 

7.1% to 14.0% 
additional VMT 
depending on vehicle 
range and charging 
infrastructure 
configuration 

Zmud et al. (55) Descriptive analysis Consumer 
acceptance survey 
and interviews 

66% of respondents 
indicated that their 
annual VMT would not 
change 

Stephens et al. (64) Descriptive analysis; 
Estimating 
upper/lower bounds 
of VMT impacts 

Review of findings in 
the literature 

enormous uncertainty 
in the effect of CAV on 
VMT for full automation 
scenarios 

Source: FHWA 2018 
AV = isolated-automated vehicle. CAV = connected and automated vehicles. NHTSA = National 
Highway Traffic Safety Administration. SAV = shared-automated-vehicle. VMT = vehicle miles 
traveled. 

In their report on the effects of next-generation vehicles, Bierstedt et al. (31) related the potential 
increase in VMT to the improved driving experience enabled by automation. The authors argue that 
a better driving experience (i.e., one with less stress, in-vehicle entertainment or productive 
activities) may cause vehicle owners to travel more. With higher automation leading to a better 
driving experience, automation levels 4 and 5 have a higher impact on VMT than lower automation 
levels that require the constant attention of drivers. They estimate the VMT increase per capita at 
35 percent. 

Litman (27), in his study on automated vehicle predictions, agrees with the argument in the above-
mentioned report that more convenient and productive travel will induce higher total VMT on the 
network. In addition, AVs will make it possible for non-drivers to use this mode and for self-driving 
taxis to travel more on backhauls.  

Childress et al. (83) used a modified activity-based model for the Seattle region to explore the 
potential travel impacts of automated vehicles. The results showed that AV technology increased 
total VMT by between 4 percent and 20 percent for all scenarios. Vehicle-hours-traveled (VHT), 
however, increased only in the case where the costs of induced demand are much higher than the 
benefits of higher capacity, leading to increased average travel time. In other simulated cases, 
however, the capacity improvements on the network are shown to outweigh the costs of induced 
demand and results in an overall improvement in travel time.  
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Kim et al. (85) adopted a similar approach to Childress et al. (83) by modifying the activity-based 
model for the Atlanta region to include a Level 4 AV mode at 100 percent market penetration. The 
authors simulated different scenarios based on assumed potential improvements of the AV 
technology to road capacity (50 percent increase), in-vehicle time disutility (50 percent decrease), 
operational costs (71 percent decrease), and parking costs (0 costs at destination). The results 
show that, for the different scenarios, the total number of trips increase from 0.8 percent  to 2.6 
percent and that daily VMT increase from 3.6 percent to 23.9 percent over the base scenario with 
regular vehicles. 

Auld et al. (32) also used an activity-based model to evaluate CAV-related impacts on travel 
demand in the city of Chicago, Illinois. Similar to the above-mentioned studies, the authors 
simulated multiple scenarios based on varying assumptions with regard to the potential benefits of 
CAV systems. Those assumed benefits are measured by road capacity improvements, CAV market 
penetration levels, and improved value of travel time. The simulation results show that total VMT 
increased by 1 percent to 78 percent depending on the scenario and benefits assumed. The results 
also show that a reduction in value of time has a more significant impact on VMT than the potential 
capacity increase resulting from increased CAV market penetration rates. 

Zhao and Kockelman (33) implemented a different approach in their study to evaluate the impact 
of connected and automated vehicle system on VMT. They modified an existing four-step model 
for the Austin region in Texas to introduce two new travel modes: private CAVs and shared AVs. 
For the mode choice step, the authors used a simplified Multinomial Logit model with four mode 
choices: (Auto, CAV, SAV, and BUS). The authors tested multiple scenarios based on different 
assumptions regarding the key parameters in the model, including value of travel time, parking 
costs, CAV operating costs, and SAV operating costs. Their results show that VMT increases by 18 
percent to 29 percent when the new CAV modes are introduced. 

Chen et al. (54) analyzed the operation of shared-automated-electric-vehicle (SAEV) systems 
using an agent-based simulation tool under various vehicle ranges and charging infrastructure 
scenarios for a gridded city. The simulation results showed that the SAEV service generates 7.1 
percent to 14.0 percent increase in VMT due to the need to travel empty miles for charging and 
passenger pick up. The percentages are lower, however, for cities with more concentrated origin-
destination patterns, as in the case of Austin, Texas. 

Zmud et al. (55), in a recent report, interviewed a sample of travelers and asked them whether their 
annual vehicle miles traveled would change if self-driving vehicles were available today. The 
majority of respondents (66 percent) indicated that their annual VMT would not change, while 25 
percent of respondents indicated that it would increase. Of course, it is not clear that typical 
respondents fully understand that empty vehicle trips generated by their travel would be part of 
their VMT. 

Stephens et al. (64) estimated the upper and lower bounds of the CAV impacts on vehicle miles 
traveled for four different scenarios: 1) Base with no automaton nor connectivity, 2) Partial: with 
partial automation and some connectivity, 3) Full-No Rideshare: with full automation and high 
connectivity but no rideshare, and 4) Full-With Rideshare: with full automation, high connectivity, 
and rideshare. The upper and lower bounds were defined using the highest/lowest potential VMT 
impacts for each scenario that were reported in previous studies in the literature. Their analysis 
reveals considerable uncertainty in the effect of CAVs on VMT for full automation scenarios, which 



 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  49 

reflect the wide range of assumptions used in the literature about the behavior of the new system 
in the absence of actual data. 

Operation-related Impacts of Connected and Automated 
Vehicle Technology 
This section provides a review on some of the automated driving behavior models used for traffic 
simulation in addition to some of the prior/ongoing work on CAV-related traffic control and policies, 
such as speed harmonization and reserved lanes for automated vehicles. Early automated driving 
models focus on automating car-following as an assistant system to the driver. To do so, the models 
assume that vehicle uses basic sensors to get information about relative speed and distance to the 
leading vehicle. Using such information, the vehicle is able to adjust its speed automatically, 
keeping a safe distance from the leading vehicle. Such systems are called “advanced cruise 
control” or “adaptive cruise control.” Other models extended adaptive cruise control systems to 
include V2V and V2I communication technology in order to predict the traffic state ahead of the 
vehicle and create platoons that can travel at closer relative distances. Such systems are called 
“cooperative adaptive cruise control.” Table 7 provides a summary of selected studies on the 
impacts of automated cruise control systems on traffic flow. The studies are described further in the 
following subsections. 

Table 10. Summary of selected studies on the impacts of AICC/ACC and CACC on traffic 
flow. 

Study Model Connectivity Major Findings 
Ioannou and Chien 
(17) 

AICC No AICC can lead to smoother traffic 
flows and larger traffic flow rates, 
and can outperform human driving in 
emergency cases 

Van Arem et al. (37) AICC No AICC can reduce the number of 
shockwaves generated in traffic 
stream and the number of vehicles 
inside them 
In high demand scenarios, AICC can 
deteriorate flow rate 

James et al. (41) ACC; different 
models 

No ACC has a minor impact on traffic 
flow at low market penetrations while 
it has a negative impact at higher 
market penetrations 

Van Arem et al. (42) CACC Yes Traffic flow improves at high demand 
and CACC market penetrations 
while it deteriorates at low market 
penetrations 

Vander Werf et al. 
(38) 

ACC/CACC No/Yes ACC systems have minimal effect on 
highway capacity even at high 
market penetrations while CACC 
systems have a significant effect on 
highway capacity that is proportional 
to the market penetration of the 
technology 
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Table 10. Summary of selected studies on the impacts of AICC/ACC and CACC on traffic 
flow. (continued) 

Study Model Connectivity Major Findings 
Shladover et al. (49) ACC/CACC No/Yes ACC is unlikely to produce a 

significant increase in capacity 
Melson et al. (66) CACC – 

Network 
Dynamic Traffic 
Assignment 

Yes Travel time reductions proportional 
to demand levels and significant 
reduction in congestion due to 
CACC 

Source: FHWA 2018 
ACC = Adaptive cruise control. AICC = automated intelligent cruise control. CACC = cooperative 
adaptive cruise control. 

Automated Intelligent Cruise Control/ Adaptive Cruise Control 
In one of the early works on automated driving models, Ioannou and Chien (17) developed an 
automated intelligent cruise control (AICC), also referred to as adaptive cruise control (ACC), 
system for automatic car-following where they examined the system’s effect on traffic flow and 
compared its performance with human driver models. The AICC system does not exchange 
information with other vehicles, but has access to relative speed and velocity with respect to the 
leading vehicle. To eliminate oscillation effects, the authors used a safe distance separation tool 
that is proportional to the vehicle velocity (constant time headway), and designed the system 
accordingly. The constant headway was calculated using a worst-case stopping scenario. 

The authors used simulation experiments to compare AICC with three human driver models. The 
oscillations and long settling times observed with human driver models are non-existent in 
automatic vehicle following. Results indicated that automatic car following can lead to smoother 
traffic flows and higher traffic flow rates due to automated vehicles driving with shorter safety 
spacing, and less reaction times. The authors also concluded that AICC could outperform human 
driving models in different emergency cases like emergency stopping and cut-ins. More information 
on the control logic and simulation experiments are found in the paper. 

In another work on modeling AICC, Van Arem et al. (37) proposed a system that automatically 
maintains a desired speed of the vehicle taking into account a minimal headway with respect to the 
leading vehicle. As in the case of Ioannou and Chien’s work (17), the system is assumed to be 
independent and disconnected from other vehicles or road-side systems. Furthermore, the driver 
is assumed to take over control of in case of emergencies. The authors used the simulation model 
MIXIC to study the potential impact of AICC on traffic. The model assumes that relative speed and 
distance is obtained from a basic sensor. 

Simulation results showed that AICC could reduce the number of shockwaves generated in a traffic 
stream, and reduce the number of vehicles inside those shockwaves, indicating a more stable traffic 
flow. However, in some simulated scenarios where traffic demand was high, results showed that, 
under the particular assumptions made by the authors, AICC might lead to degraded traffic 
performance. On the other hand, low AICC penetration had no significant effect on traffic flow 
properties. 
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James et al. (41) assessed the impacts of ACC on traffic flow using four ACC car following models 
programmed into the simulation platform VISSIM. The ACC models tested were MIXIC (47), IIDM 
(65), Path empirical (50), and Delft empirical (39). Furthermore, the models were calibrated using 
data collected with a 2013 Cadillac SRX with a production ACC-enabled system while following a 
human-driven 2013 Cadillac SRX in northern Virginia. The results show that the models tested are 
different in their sensitivity to calibrated coefficients. In addition, the simulations show that ACC has 
a minor impact on traffic flow at low market penetrations while it has a negative impact at higher 
market penetrations emphasizing the importance of connectivity in automated cruise systems. 

Cooperative Adaptive Cruise Control  
Van Arem et al. (42) extended the concept of AICC to include V2V communications so that 
automated vehicles can follow leading vehicles at a closer distance. In addition to knowing relative 
distance and speed, V2V communications allows vehicles to coordinate speed changes, exchange 
precise speed information, accelerations, warning of forward and hazards, and maximum braking 
capabilities. The authors used the traffic simulation tool MIXIC to study the cooperative adaptive 
cruise control (CACC) effect on traffic characteristics. 

Simulation results showed an improvement in traffic-flow stability and a slight increase in traffic-
flow efficiency. The traffic flow especially improves in conditions with high-traffic volume and when 
high fractions of the vehicle fleet are CACC equipped. At low-CACC presence (< 40 percent), 
results indicted a degradation of performance demonstrated by lower speeds, higher speed 
variances, and more shock waves. The system has a negative effect on traffic safety in the merging 
process; close CACC platoons prevent other vehicles from cutting in resulting in an increasing 
number of removed vehicles due to conflicts. As for shockwave, simulations showed a decrease in 
the number of shockwaves before a lane drop when a high number of CACC-equipped vehicles 
are present. 

In another work by Vander Werf et al. (38), the authors studied the effects of Adaptive Cruise Control 
(ACC) and CACC on highway traffic flow capacity using a Monte Carlo simulation approach. Three 
types of vehicles were simulated in the study: 1) vehicles driven by humans, 2) vehicles equipped 
with ACC system to control speed with 1.4 s time gap, and 3) vehicles equipped with CACC system 
enabled by V2V and using a time gap of 0.5 seconds. Furthermore, the two automated cruise 
systems were simulated for different scenarios by varying market penetrations.  

The study results show that ACC systems have minimal effect on highway capacity even at high 
market penetrations (7 percent increase in capacity at most.) On the other hand, CACC have a 
significant effect on highway capacity that is proportional to the market penetration of the 
technology. At full CACC market penetration, for example, the highway capacity can increase to 
more than double the capacity of the base case (without ACC or CACC systems) 

Shladover et al. (49), also studied the effect of Adaptive Cruise Control - ACC and CACC on 
highway capacity using the micro-simulation tool AIMSUN. The authors used the distribution of time 
gap settings by drivers that participated in real field experiments prior to the study. The authors 
simulated four types of vehicles: manual vehicle with driving behavior represented by the NGSIM 
oversaturated flow model, ACC vehicle with driving behavior represented by a simple first-order 
control model, Here-I-am (HIM) vehicle which constantly broadcasts its location, and CACC vehicle 
that uses its capability if it follows HIA or CACC vehicle and acts as a normal ACC vehicle otherwise.  
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Results showed that ACC is unlikely to produce a significant increase in capacity as drivers are 
comfortable with driving gaps that are similar to the gaps drivers choose when driving manually. 
CACC, however, showed a potential for significant increase in capacity at high market penetration. 
This is due to drivers being more confident in following vehicles with shorter gaps due to higher 
dynamic response of CACC over ACC. 

In addition to the abovementioned microsimulation approaches, Melson et al. (66) studied the effect 
of CACC at the network level by incorporating CACC into the link transmission model (LTM) for 
dynamic network loading. As a first step, the authors derived the CACC flow-density relationship 
(fundamental diagram) of CACC from the MIXIC car following model. After verifying the 
fundamental diagram with the observed speeds and flows using the simulation platform VISSIM, 
the authors created a network loading model using the aforementioned fundamental diagram in 
LTM.  

Comparing DTA and MIXIC microsimulation on a subnetwork, both models predicted travel time 
reductions (up to 32 percent) with increasing demand as a result of CACC. The authors also tested 
CACC on two larger networks: a 28-mile corridor of I-35 near Austin, Texas where all vehicles were 
assumed to be equipped with CACC, and the Round Rock Network where one CACC lane was 
added. Results of both networks show a significant reduction in congestion due to CACC, however, 
the Round Rock network results indicate an increase in the overall travel time due to rerouting. This 
underscores the importance of including user route choice in the DTA analysis of CACC. 

Information Routing Protocols and Communication Networks 
Information routing protocols in the literature can be categorized into two distinct groups: topology-
based (ad-hoc) protocols and position-based protocols. Ad-hoc routing methods have been 
originally developed for mobile ad-hoc networks (MANETs), which share certain similarities with 
vehicular ad-hoc networks (VANETs), including self-organization and low transmission range. 
Therefore, some of MANET specific routing protocols can be used in VANETs (86). AODV (ad-hoc 
on-demand distance vector) (87) and DSR (88) are among the routing protocols originally 
developed for MANETs that can also be used in VANETs. VANETs, however, are more dynamic, 
and using MANET-specific routing protocols can result in poor routing performance and low 
throughput (89). Note that MANET specific routing protocols are the only routing protocols available 
in ns-3. 

Cluster-based routing protocols are another category of position-based protocols. A cluster consists 
of a cluster head and several cluster members. Cluster members can only communicate with their 
cluster head and cluster heads can communicate with their cluster members and other cluster 
heads. Various criteria have been proposed to form the clusters and select the cluster head, such 
as respective locations, speed difference (48), link quality, node position, and node reputation (90). 
Bhaumik et al. (91) proposed a clustering routing protocol based on the affinity propagation 
clustering algorithm (92), in which each node calculates its similarity to other neighbors and 
connects to the most similar node. Stable clusters are the key to effective information routing 
through clusters and to avoid unnecessary signal interference. 

The Node Mobility Model (ns-3) provides several native mobility models. However, similar to routing 
protocols, these mobility models are MANET specific and do not address the VANET mobility 
needs. Therefore, several efforts have been made in the literature to incorporate vehicular 
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movements into different wireless communication simulators. Harri et al. (93) present a 
comprehensive review of these efforts. However, as mentioned previously, these mobility models 
are not sensitive to the flow of information in a connected environment.  

Integrated Traffic-Telecommunication Framework for Simulating 
connected and Automated Vehicles - Northwestern University 
Transportation Center 
To explore questions regarding the flow impacts of connected and/or automated vehicles, it is 
important to formulate microscopic models that capture the capabilities of the new technologies as 
well as the attendant behavior of human drivers. For human drivers, one could rely on a variety of 
existing models, albeit actual behavior will only be observed when there is sufficient deployment of 
these technologies. Specific logic for autonomous vehicles will be robotic in nature and essentially 
supplied by the operating entity, and thus likely proprietary. Connected vehicle behavior would be 
largely dependent on the implemented capabilities. One of the first efforts to model the interactions 
between different driving behaviors in connected environment is the simulation platform developed 
by Talebpour et al. (94) at the Northwestern University Transportation Center (NUTC). 

The abovementioned platform integrates three different driving behaviors: regular vehicles, 
connected vehicles, and automated vehicles. For regular vehicles, the authors relied on a 
stochastic car-following model introduced by Hamdar et al. (95) and extended by Talebpour et al. 
(96). The model, which is based on the Prospect Theory (97), captures drivers’ crash-avoiding 
behavior while maintaining a desired speed. For modeling connected vehicles, the authors opted 
for a deterministic Intelligent Driver Model (IDM). The authors choice of a deterministic model is 
based on the assumption that connected drivers are more certain about other drivers’ behaviors, 
since they exchange information in real time through V2V and V2I communications. Finally, for 
modeling automated vehicles, Talebpour et al. (98) introduced a car-following model for automated 
vehicles based on the previous simulation studies by Van Arem et al. (42) and Reece and Shafer 
(99). In their model of automated vehicles, the authors considered two main factors: (1) their ability 
to constantly monitor other vehicles in their vicinity, which can result in a deterministic behavior in 
dealing with other drivers’ behavior; and (2) their ability to react almost instantaneously to any 
changes in the driving environment. 

With respect to modeling wireless telecommunications, the Node Mobility Model (ns-3) was 
integrated with the microscopic vehicular traffic simulation framework described in this section. 
Thus, the positions of the vehicles are governed by the micro rules in the simulator, including 
whatever messages may be received through the VANET, as transmitted by ns-3 to the vehicles in 
their evolving positions. 

The integrated platform was used to test the traffic throughput and stability impacts of mixed traffic 
streams with varying compositions of automated and/or connected vehicles (25). The throughput 
analysis shows that higher market penetration of CAVs results in a higher throughput and that 
automated vehicles have a higher impact on throughput than connected vehicles. Similarly, the 
stability analysis shows that string stability increases at higher CAV market penetration and that 
automated vehicles also have a higher impact on stability than connected vehicles. 
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Control-related Applications in a Connected and Automated Vehicle 
Environment 
Speed Harmonization in a Connected Vehicle Environment 

Speed harmonization is a form of variable speed limit control that adjusts and coordinates the 
maximum appropriate speed limit on the basis of the prevailing traffic conditions, as way of avoiding 
or mitigating shock wave formation, dampening its propagation, and minimizing incident-related 
hazards by controlling vehicular speeds and reducing the spatial variance of traffic speeds (10; 26; 
76; 84; 100). It is generally coupled with sensing aimed at early shock wave detection to avoid and 
mitigate flow breakdown (10). Conventional installations of speed harmonization rely on fixed 
sensors to monitor traffic, and accordingly display the same dynamic speed limits at fixed location 
installations (overhead mounts).  

Connected vehicle technology allows sensing anywhere there are connected vehicles, which 
effectively act as probes, considerably extending the spatial realm over which shock waves might 
be detected, ensuring earlier detection with appropriate algorithms (76). Similarly, speed limits 
could be displayed to drivers in connected vehicles individually, allowing greater range for the 
effectiveness of the strategy, in addition to enabling a finer gradation of displayed speeds, e.g. 
based on upstream distance from the projected tail of the shock wave.  

Automated vehicle technology, on the other hand, can also help dampening shockwaves through 
controlling velocity of automated vehicles in the traffic flow (44). In a field experiment conducted by 
Stern et al. (44) on a closed ring road, the authors found that one automated vehicle can control 
the flow of at least 20 human controlled vehicles around it. The speed-controlled automated vehicle 
can substantially reduce the speed variation among vehicles, excessive braking, and fuel 
consumption. 

In Ma et al’s review (77) of recent speed harmonization algorithm developments, summarized in 
Table 8, the authors categorized the CAV-enabled algorithms into: 1) algorithms that use shared 
information with CV system (79; 81-83) and 2) algorithms that control vehicles equipped with CAV 
systems (84; 85). The results of the studies reviewed show the effectiveness of CAV-enabled speed 
harmonization in delaying and/or dampening traffic oscillations, in addition to improving safety and 
sustainability. 

Table 11. Summary of recent studies on speed harmonization applications enabled by 
connected and automated vehicle systems   

Study Comm. Input Control Algorithm Results 
Lu et al. 
(75) 

V2I Segment 
speeds, detailed 
trajectory-level 
data not 
necessary 

Reduce speed limits of 
freeway segments upstream 
of a bottleneck in proportion 
to the observed bottleneck 
speed if vehicle flow 
throughputs are above the 
bottleneck capacity 

Works for a corridor 
and a freeway 
network with 
multiple bottlenecks 
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Table 11. Summary of recent studies on speed harmonization applications enabled by 
connected and automated vehicle systems. (continued)   

Study Comm. Input Control Algorithm Results 
Talebpour 
et al.  (76) 

V2I Detailed 
microscopic 
vehicle trajectory 

A wavelet-transform based 
algorithm to detect formation 
of perturbations; a cognitive 
risk-based microscopic 
simulation model was 
adopted to account for human 
behavior; a reactive speed 
limit was selected to 
implement SH reactive speed 
limit was selected to 
implement SH 

Effectively delay or 
eliminate traffic 
breakdown and 
improve traffic 
safety even at a low 
penetration rate of 
10% 

INFLO 
project 
(77) 

V2V/V2I Speed 
measured from 
connected 
vehicles and 
infrastructure-
based sensors 

Group freeway sub-links with 
similar recommended speeds 
to produce harmonized 
speeds 

SH effectiveness 
depends upon 
driver compliance 

Li et al. 
(45) 

V2V Leading 
vehicle’s input 

CAV car-following rule Effectively suppress 
development of 
oscillation and 
consequently 
mitigate fuel 
consumption and 
emission 
 

Wang et al. 
(101) 

V2I Aggregated 
traffic state 

Use aggregated traffic state 
information to detect 
formation of congestion at a 
bottleneck; each CAV 
processes the VSL signals 
from the central control unit 
individually 
 

The connected VSL 
and vehicle control 
system improves 
traffic efficiency and 
sustainability, i.e., 
total time spent in 
the network and 
average fuel 
consumption rate 
are reduced 

Yang and 
Jin (78) 

V2I Individual 
vehicle’s 
information 

Advisory speed limit is 
calculated by each individual 
vehicle and then averaged 
among green driving vehicles 

When 5% of the 
vehicles implement 
the green driving 
strategy and the 
communication 
delay is 60 s, the 
fuel consumption 
can be reduced by 
up to 15% 
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Table 11. Summary of recent studies on speed harmonization applications enabled by 
connected and automated vehicle systems. (continued)   

Study Comm. Input Control Algorithm Results 
Ahn et al. 
(102) 

Radar 
and 
V2V 

Topographic 
information, the 
spacing between 
the subject and 
lead vehicle, and 
a desired (or 
target) vehicle 
speed and 
distance 
headway 

Use a rolling horizon-based 
optimization approach to 
control vehicle speed within a 
preset speed window in a 
fuel-saving manner 

Simulated fuel 
savings in the 
range of 27% are 
achieved with an 
average vehicle 
spacing of 47 m 
along a study 
section of Interstate 
81 

Source: Ma, J., X. Li, S. Shladover, H. A. Rakha, X.-Y. Lu, R. Jagannathan, and D. J. Dailey. 2016. 
Freeway speed harmonization. IEEE Transactions on Intelligent Vehicles, 1(1): 78-89. 

Dedicated Lanes for Automated Vehicles 

One approach to attain greater throughput gains in mixed traffic situations could be to provide 
dedicated lanes for auomated vehicles. Such lanes can minimize the interactions between regular 
and automated vehicles and provide the opportunity to significantly increase the density of 
automated vehicles in those lanes. While adding dedicated lanes to the current roadway system is 
an expensive approach, a more feasible approach is to prevent regular vehicles from using one or 
more lanes and reserve those for autonomous vehicles on existing multilane facilities. Such an 
approach, however, may significantly increase congestion and reduce throughput in the regular 
lanes. 

Similar approaches have been widely implemented in transportation systems to deal with the 
growing demand for travel and to reduce congestion. Managed lanes, high occupancy toll (HOT) 
lanes, high occupancy vehicle (HOV) lanes, and express lanes are all based on a similar concept. 
A key element in all these approaches is designing effective strategies and/or pricing schemes to 
attract enough travelers to those lanes to reduce the congestion in the main lanes, while keeping 
the flow within the managed/HOT/HOV/express lanes at pre-breakdown levels (104). Despite the 
similarities between the concept of reserved lanes for autonomous vehicles and those congestion 
management approaches, designing reserved lanes in this case faces additional complexities 
arising from the interactions between regular and autonomous vehicles.  

To address these challenges and to explore the potential effects of reserving a lane for autonomous 
vehicles, Talebpour, Mahmassani and Elfar (105) applied the microscopic simulation platform 
described in Section 0 to a 3.5-mile section of a four-lane freeway in the Chicago region. Three 
distinct operational policies are tested in conjunction with reserving the leftmost lane for 
autonomous vehicles: (1) mandatory use of the reserved lane by automated vehicles, (2) optional 
use of the reserved lane by automated vehicles, and (3) limiting the automated vehicles to operate 
autonomously in the reserved lane.  

The findings of these investigations suggest that the optional use of the reserved lane without any 
limitation on the type of operation can improve congestion and reduce scatter in the fundamental 
diagram. In contrast, limiting autonomous vehicles to the reserved lane and preventing autonomous 
operation in regular lanes could significantly increase congestion and result in breakdown 
formation. In particular, mandatory lane-changing maneuvers of automated vehicles are the main 
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source of shockwave formation. The analysis is extended to higher overall flow levels (beyond 
those currently observed on that facility) to explore the minimum and optimal threshold levels for 
introducing such reserved lanes. In this case, reserving one of the four lanes for automated vehicles 
is only beneficial at market shares above 30 percent. Furthermore, travel time reliability analysis 
revealed that optional use of the reserved lane can yield the most benefit 

In a working paper by Su et al. (106), the authors investigated introducing CACC vehicles using 
three lane management strategies. The first strategy is HOV-only where the left-most lane accepts 
only HOV vehicles. In the second strategy, the left-most lane is open to both HOV and CACC 
vehicles. In the third one, the managed lane is only open to CACC vehicles. The three scenarios 
were simulated using a microscopic freeway simulation platform VISSIM and the MIXIC model for 
dynamic CACC operations in a 14-mile section of Interstate-66 near Washington, DC. 

The simulation results showed that the dedicated CACC lane’s capacity can reach as high as 3800 
vphl because of having higher and more stable speeds than general purpose lanes. However, for 
low market penetrations, the analysis shows that dedicated lanes are inefficient. For market 
penetration (MPR) below 25 percent, HOV + CACC is the best strategy where capacity increases 
by 10 percent for 25 percent MPR over the base case. At 45 percent MPR, the CACC only strategy 
was the best out of the three where capacity increased by 10 percent for the whole corridor. 

Intersection Control with Connected and Automated Vehicles 

Flow control at urban intersections with connected and automated vehicles is critical to the overall 
performance of the transportation system. If increases in throughput on major freeways and arteries 
are met with limited capacity and sluggish performance on urban streets and junctions, queues and 
gridlock will result. Unfortunately, the opportunities at intersections are more difficult to realize, 
largely because, by their very function, junctions require the allocation of limited capacity to 
conflicting movements. Unless all parts of a conflict can communicate, the lowest common 
denominator will prevail, meaning the characteristics of regular unconnected vehicles will play the 
predominant role in overall performance. 

Development in automated vehicle logic for maneuvering at and around signalized intersections in 
urban areas has focused primarily on ensuring safety, especially with regard to the wide array of 
entities typically present in the urbanscape, such as pedestrians, bicycles, skateboards, and other 
shapes not typically present in a freeway environment. Hence it is natural that risk aversion would 
take precedence over performance in developments to date. As the artificial intelligence and pattern 
recognition algorithms operating on multiple vehicle-based sensors continue to mature, one can 
expect shorter reaction times as the light turns from red to green, and snappier discharge rates 
from queues (shorter headways), which would increase the nominal approach capacities, resulting 
in lower overall delay. However, to the extent that the discharge from a queue can be held up by a 
long-headway vehicle, these benefits will remain relatively minor, especially at low market shares. 

Communication is the key to improving intersection performance. Hence much development to date 
has targeted connected vehicle environments, and in the limit automated vehicles in connected 
environments. Three types of strategies have been suggested, in increasing order of market 
penetration required.  

1. Using data from connected vehicles to improve adaptive signal control operation.  

This is the proverbial “low-hanging fruit” under low market penetration rates of connected vehicles. 
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Connected vehicles essentially act as vehicle probes that provide information on the prevailing 
traffic system, that the (signal) controller could use as a basis for more or less predictive control. In 
its least ambitious form, connected vehicles augment existing fixed sensors to provide more 
complete information to existing control logic. More sophisticated strategies devise more powerful 
data-driven control logic with varying projection horizons and spatial scope. The main improvement 
due to these strategies arises from enabling more responsive traffic signal control. As such, it is 
bounded by the improvement that one could expect from better signal control, which is typically 
limited in congested urban contexts (73). Examples in this general category include work by 
Priemer and Friedrich (67), Goodall et al. (72) and Feng et al. (107). 

2. Improving service rates through opportunistic coordinated platooning.  

The main idea in these approaches is to combine whenever possible connected vehicles on a 
particular approach that wish to traverse an intersection, and serve them in a coordinated platoon, 
thereby improving the saturation flow rates for those cycles where there is sufficient presence of 
platoonable vehicles. Lioris et al. (40) have conducted simulation experiments to evaluate the 
strategy under simplifying assumptions, for different market penetrations of connected vehicles. 
Related approaches for opportunistic signal operation in the presence of connected vehicles are 
discussed in Guler et al. (71). 

3. Eliminating signals altogether through individual trajectory coordination in 100 percent 
connected environment, preferably with automated vehicles.  

This approach has received the most hype in the popular media, featuring automated vehicles in 
fully connected environments seamlessly negotiating their way through busy intersections without 
the need to stop. Algorithms have been proposed and tested through simulation in a few instances 
by Hausknecht et al. (69) Fajardo et al. (74), and Lee and Park (68). A major unknown in the 
proposed approaches is the extent to which they may scale up, to typical congested urban 
intersection levels, and to operation at more than just one or a few isolated intersections, to 
encompass an entire network. In addition, safe and reliable schemes to accommodate pedestrians 
and bicycles (where applicable) remain to be demonstrated. These are important questions for 
further research as interest in deploying the infrastructure for such connected systems continues 
to gain ground as part of the smart cities narrative.  
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Chapter 5. Identified Data Sources for 
Connected and Automated Vehicle 
Analysis, Modeling, and Simulation in 
Prior/Current Work 

This chapter identifies existing data sources as well as emerging ones which are required to 
support the AMS capabilities for connected and automated vehicles at the strategic and operational 
levels. An assessment of the identified sources is discussed in detail in the Task 5 report (5) 

Data Sources for Supply-related Connected and 
Automated Vehicle Analysis, Modeling, and Simulation 
The review of work on the supply-related impacts of CAVs focused on the operation of Shared-
Automated-Vehicles as a new mobility option that is enabled by CAV technology. The review 
showed that researchers have already started formulating different scenarios in which new mobility 
modes are operating and building different tools to model the SAV operation. Table 12 summarizes 
the data used in the selected studies. 

Some researchers approached SAV modeling as a special case of fleet management problems 
(59) and defined it as a dynamic, multi-vehicle pickup and delivery problem with explicit or implicit 
time-window constraints to inform future research on automated vehicle fleets. Other groups 
proposed frameworks for modeling SAV (60; 61) such as an event-based simulation with two main 
events: 1) a demand simulator and 2) an SAV dispatcher. Other studies developed agent-based 
simulation tools to evaluate the impacts of the new shared mode (54; 56). Below is a description of 
the main data sources identified.
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Table 12. Summary of reviewed papers which are related to SAV modeling. 
Study Model Data  
Levin et al. (60) Event-based framework 

for modeling SAV vehicles 
where the first event 
introduces demand and 
the second event dispatch 
SAVs to fulfil that demand 

• Subnetwork of Austin, Texas. Consists 
of downtown grid with freeway and 
arterial corridors. It has 171 zones, 546 
intersections, 1,247 links, and 62,836 
trips over 2 hours in the AM peak 

Fagnant and 
Kockelman (56) 

Agent-based simulation • Network of Austin, Texas available 
through The Capital Area Metropolitan 
Planning Organization’s (CAMPO). It is 
comprised of 13,594 nodes and 32,272 
links (including connectors). 

• Trip data from the 2009 NHTS Data for 
Texas 

Chen et al. (54) Agent-based simulation 
for Shared-Automated-
Electrical Vehicles (SAEV) 

• Hypothetical gridded city, 100-mile 146 
by 100-mile gridded metropolitan area 

• Trip data from the 2009 NHTS Data for 
Texas 

Mendes et al. (61) Event-based simulation 
comparing SAV to light rail 

• Proposed light rail line connecting 
Brooklyn and Queens in New York City 

Source: FHWA 2018 

Basic Roadway Infrastructure Physical Characteristics 
Basic characteristics of the infrastructure are required to model the operation of SAVs over the 
network. These can include real networks, such as the Austin, Texas subnetwork used to model 
SAV in Levin et al’s study (60),  or hypothetical ones such as the gridded network created by Chen 
et al. (5) for their study of electric SAVs. 

Baseline Aggregate Traffic Conditions 
Aggregate traffic data, such as traffic volumes, speeds, and densities, are used to calibrate the 
traffic models and network models used in simulating SAV operations. For example, Levin et al. 
(60) used traffic data from the Capital Area Metropolitan Planning Organization to calibrate the 
network models in the SAV operation framework of Austin, Texas. 

Travel Demand Data 
In the context of modeling SAVs travel demand data is used to define the number of trips/individuals 
that needs to be served by an SAV fleet on a network. Fagnant and Kockelman (56), for example, 
used the 2009 National Household Travel Survey (NHTS) data of Texas to set the demand for their 
numerical experiments and determine the optimal fleet size required to serve that demand. Chen 
et al. (5) also used the demand of 2009 NHTS data for Austin, Texas to define the number of trips 
on a hypothetical gridded network modeled after Austin, and determine the optimal electric SAV 
fleet size to serve the number of trips based on vehicle range, battery recharge time, and charging 
station locations. Mendez et al. used 2035 origin-destination projections by the New York City 
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Department of Transportation to compare an SAV system to light rail line between Brooklyn and 
Queens in New York. 

The NHTS data set is one particular source that has been used by multiple studies on SAV 
operations to set or calibrate the number of trips on networks. The survey collects information on 
daily trips which mainly include the purpose, mode, trip duration, time of day, day of the week, and 
vehicle occupancy (for private vehicles). 

Performance Characteristics of Connected and Automated Vehicle 
Systems 
Performance characteristics of automated vehicles are often assumed by researchers or in some 
cases are based on limited field experiments to model the operations of SAV fleet. Those 
assumptions, in the case of SAV modeling, include among others vehicle capacity, connectivity, 
and travel range. 

Data Sources for Demand-related Connected and 
Automated Vehicle Analysis, Modeling, and Simulation 
The review of work on the demand-related impacts of CAVs addressed the potential changes the 
technology could bring to the travel demand and behavior. The review covered four main 
impacts/changes: 1) adoption of CAV technology, 2) travel mode shifts, 3) vehicle ownership, and 
4) vehicle miles traveled (VMT) changes. 

Previous research predicted the adoption rate of the new technology and the characteristics of 
users who are likely to use it using different approaches. Some studies compared the deployment 
of CAV systems to previous new technology deployments such as automatic transmission (27) and 
Hybrid Electric Vehicles (28), or used network level simulations (81). Other studies conducted 
stated preference surveys to characterize adopters of the new technology (35; 82).  

Table 13 provides a summary of the data sets used in predicting the adoption rate of CAVs. 

Table 13. Summary of selected studies on connected and automated vehicle technology 
adoption. 

Study Model Data  
Litman (27) Comparison to 

previous vehicle 
technology 
deployment 

• Historical data for previous technology 
deployment 

Lavasani (28) Generalized Bass 
diffusion models 

• Historical sales of Hybrid Electric Vehicles 
in the US 

• Internet and cellphone adoption from the 
World Bank database 

• Demographic data 
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Table 13. Summary of selected studies on connected and automated vehicle technology 
adoption. (continued) 

Study Model Data  
Bansal and 
Kockelman (81) 

Agent-based 
simulation 

• U.S. survey of 2167 participants regarding 
their preferences for CAV technology and 
their household annual vehicle 
transactions 

Lavieri et al. (82) Generalized 
Heterogeneous Data 
Model; Structural 
equations 

• Puget Sound Regional Travel Survey, 
2014-2015, collected for 1,832 
individuals; includes detailed information 
about socio-economic, demographic, 
activity-travel characteristics, attitudes 
and preferences including those towards 
AV technology 

Haboucha et al. (35) Logit Kernel choice 
model of autonomous 
vehicles 

• Stated preference survey on AVs; 
September-November 2014 in the US and 
Israel; 721 individuals; questions included 
driving habits,  

Source: FHWA 2018 

In terms of potential mode shifts caused by CAV systems, the literature approached the question 
by modifying existing demand models and adding the AV vehicles as a new mode (34; 36; 83). The 
characteristics of the new vehicles like costs and value of time were derived from finding of and 
predictions of other studies in addition to performing sensitivity analysis to different assumed 
values.  

Table 14 provides a summary of the data sets used by selected studies on potential mode shifts 
caused by CAV systems. 

Table 14 Summary of selected studies on mode shift due to the introduction connected 
and automated vehicle technology. 

Study Model Data 

Childress et al. (83) Seattle region’s 
activity-based model 

• AV mode characteristics are based on 
findings of previous studies 

LaMonida et al. (34) Trip generation and 
choice models 

• Michigan State’s 2009 Long-Distance 
Travel Survey 

Perrine et al. (36) 
Modified travel 
demand model, 
rJourney 

• Journey long-distance trips traveled 
throughout the united states in 2010; 1.17 
billion rJourney tours are generated from 
a synthesized household population of 
31.5 million; four travel modes including 
automobile, bus, rail, and airlines  

Source: FHWA 2018 

As for CAV impacts on vehicle ownership, former studies, tried to evaluate those impacts by directly 
asking travelers in the form of stated preference surveys (55) or by developing simulation platforms 
with SAV service (53; 54). Table 15 provides a summary of the data sets used by selected studies 
on the abovementioned impacts. 
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Table 15. Summary of selected studies on connected and automated vehicle impacts on 
vehicle ownership. 

Study Model Data 
Schoettle and Sivak 
(52) 

Descriptive analysis • Trip data from the 2009 NHTS 

Fagnant and 
Kockelman (53) 

Agent-based 
simulation 

• Hypothetical gridded network; 10 mi x 10 
mi 

• Trip rates from the 2009 NHTS data 
Chen et al. (54) Agent-based 

simulation, Electric 
SAV 

• Hypothetical gridded city, 100-mile 146 by 
100-mile gridded metropolitan area 

• Trip data from the 2009 NHTS Data for 
Texas 

Zmud et al. (55) Descriptive analysis • Online survey of 556 residents of the 
Austin metropolitan area on consumer 
acceptance of AVs  

• Face-to-face interviews with 44 people 
Source: FHWA 2018 

Finally, previous studies in the literature evaluated the impacts of AVs on VMT by modifying existing 
activity-based models (83; 85), four-step models (33), or through agent based simulation (54). 
Some studies studied the impacts qualitatively by relating the new technology to other technology 
deployments (27) or through stated preference surveys (55). Table 16 provides a summary of the 
data sets used by selected studies on the potential VMT impacts caused by CAVs. The identified 
data sources are discussed further next. 

Table 16. Summary of selected studies on the impacts of isolated-automated vehicles on 
vehicle miles traveled. 

Study Model Data/Testing 
Litman (27) Comparison to previous 

vehicle technology 
deployment 

• Historical data for previous technology 
deployment 

Childress et al. (83) Seattle region’s activity 
based model 

• AV mode characteristics are based on findings 
of previous studies 

Kim et al. (85) Modified Atlanta regional 
activity based model 

• AV mode characteristics are based on findings 
of previous studies 

Auld et al. (32) Modified POLARIS 
activity based model 

• Chicago, Illinois network; 31,278 links and 
18,951 nodes; bus and rail lines and stations; 
3.8 million households; 27.9 million trips on an 
average day 

Zhao and Kockelman 
(33) 

Modified four-step model • Existing model for Austin, Texas 

Chen et al. (54) Agent-based simulation, 
Electric SAV 

• Hypothetical gridded city, 100-mile 146 by 100-
mile gridded metropolitan area 

• Trip data from the 2009 NHTS Data for Texas 
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Table 16. Summary of selected studies on the impacts of isolated-automated vehicles on 
vehicle miles traveled. (continued) 

Study Model Data/Testing 
Zmud et al. (55) Descriptive analysis • Online survey of 556 residents of the Austin 

metropolitan area on consumer acceptance of 
AVs  

• Face-to-face interviews with 44 people 
Source: FHWA 2018 

Historical sales data of other vehicle technologies 
Historical sales data of other vehicle technologies, such as automatic transmission and airbags, 
was used by some studies (27; 28) to predict the pattern of CAV technology deployment in the 
future. Lavasani (28), for example, used historical data of hybrid electric vehicles in the U.S. in 
addition to demographic data to predict the sales of AVs in the future. 

Socio-demographics and Economics Data 
Socio-demographic and economic data are used extensively in evaluating the demand impacts of 
CAV systems. The data can be either obtained from national data sets, such as the US Census 
(28), or are asked for directly in travel surveys (81; 82). Lavasani (28), for instance, used socio-
demographic data to characterize the early adopters of CAV systems such as age, education, and 
wealth.  

Consumer Decisions about Purchase and Use of Connected and 
Automated Vehicle Systems 
As an emerging technology, limited information is available on the actual purchases or consumer 
perception of CAV technology. Therefore, consumer surveys about their opinion of the new 
technology and potential behavioral changes are one way to obtain such information. Bansal and 
Kockelman (81), for example, surveyed 2167 Americans about their willingness to pay for the new 
technology and their annual vehicle transactions, among other factors, to calibrate an agent-based 
simulation model and predict the long-term adoption of the CAV systems. The Puget Sound 
Regional Travel study is another example of consumer perception surveys (10). The same data 
collection approach was used in other papers to predict the characteristics of early adopters (10) 
and impacts on vehicle ownership (55). 

This is an example where revealed preferences are difficult to observe because the new 
technologies have not been deployed yet, and are not available to the general public. Thus stated 
preference surveys and stated choice experiments are the main approach that has been used in 
previous studies. However, developments in technology are enabling more sophisticated 
approaches to engage respondents and obtain information that is believed to be more reliable. 
These approaches entail use of virtual reality and interactivity to make the stimuli (state choice 
questions) as relevant as possible to both the respondent and the objectives of the study. 
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Travel Demand Data 
Traditional travel surveys were used in some papers as a basis for modifying mode choice models 
and including automated vehicles as a new option. The 2010 Michigan statewide model long-
distance trip forecasts, for instance, was used by LaMonida et al. (34) to build trip generation and 
modal choice models where AV were introduced as a new mode with lower perceived travel time 
costs. As another example, the long-distance trip tours of the national long-distance travel model, 
rJourney, were used by Perrine et al. (36) to extend the model and add the automated vehicle 
option. The 2009 National Household Travel Survey (NHTS) was analyzed by Schoettle and Sivak 
(52) to explore theoretically to what extend SAV can reduce household vehicle ownership.  

Likewise, as discussed in connection with the preceding item, stated choice experiments have 
played an increasingly significant role in eliciting preferences and likely behaviors under different 
scenarios that may not yet have a real-world analogue.  

Basic Roadway Infrastructure Physical Characteristics 
The basic configuration of network and road infrastructure is required as input for agent-based 
simulation models to evaluate the demand related impacts of CAV systems such as travel time and 
VMT. It might also be required to estimate travel time for other demand models such as the four-
step. The network configuration can be hypothetical or based on a real network. For example, a 
hypothetical gridded network was used by Fagnant and Kockelman (53) in their agent-based 
simulation to evaluate the impacts of CAVs on vehicle ownership. Chen et al. (54) also used a 
hypothetical network configuration in an agent-based simulation model to evaluate the impacts of 
electric SAV fleets on vehicle ownership. 

Data to Support Activity-based Demand Models 
Some existing activity-based models were modified to include CAVs as new modes and evaluate 
their demand-related changes. For instance, an activity-based model for the Seattle region was 
modified by Childress et al. (83) to add AV as a new mode to evaluate the impacts of it on VMT. 
Kim et al. (85) and Auld et al. (32) followed a similar approach by modifying activity-based models 
for the Atlanta metropolitan region and Chicago city in Illinois, respectively. To date, no CAV-specific 
data has been obtained to reformulate or recalibrate these models; rather modifications have 
consisted in expanding the choice set of alternatives while keeping the same basic weights on 
various attributes.  

Data Sources for Operation-related Connected and 
Automated Vehicle Analysis, Modeling, and Simulation 
The review of work on the operation-related impacts included efforts of modeling AVs which focused 
on modeling automated cruise control, such as ACC and CACC systems (17; 37; 38; 41; 42; 49; 
66), in addition to modeling mixed traffic conditions (25). Below is a description of the data sources 
used in those studies. Table 17 provides a summary of the data used in selected studies. 
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Table 17. Summary of selected studies on the impacts of Automated intelligent cruise 
control (AICC)/ adaptive cruise control (ACC) and Cooperative adaptive cruise control 

(CACC) on traffic flow. 
Study Model Data 
Van Arem et al. (37) AICC • Traffic data collected on the A2 between Utrecht 

and Amsterdam, Netherlands; consists of arrival 
instant, lane, speed and length of passing 
vehicles at 3 cross-sections 

• Hypothetical road network of a sequence of 
homogenous links without on or off ramps 

James et al. (41) ACC; different 
models 

• Vehicle movement data collected on the Dulles 
Access Road in Northern Virginia by two 2013 
Cadillac SRXs equipped with ACC system; 
includes accurate distance gaps, vehicle 
speeds, and vehicle accelerations at a 
frequency of 10 Hz 

• Hypothetical road networks; four-lane freeway 
facility with no disruption and three-lane facility 
with various bottleneck conditions  

Van Arem et al. (42) CACC • Traffic data from the A4 highway, near Schiphol 
in The Netherlands; high volumes to simulate 
congestion 

Vander Werf et al. 
(38) 

ACC/CACC • Traffic data from I-880 in the San Francisco Bay 
Area 

• Highway layout consisted of a single protected 
highway lane, with a ramp–highway junction 
consisting of a single-lane off-ramp followed 
immediately by a single-lane on-ramp 

Shladover et al. 
(49) 

ACC/CACC • NGSIM vehicle trajectory data to calibrate 
manual driving 

• Vehicle movement data from a field study using 
two Nissan Infinity FX45s equipped with 
ACC/CACC systems 

Melson et al. (66) CACC – 
Network 
Dynamic Traffic 
Assignment 

• Traffic data for Austin from the Capital Area 
Metropolitan 

• Planning Organization 
• Roadway configuration of I-35 corridor in Austin, 

Texas; 220 nodes, 95 zones, and 315 links 
• Network configuration of Round Rock; 2744 

nodes (716 zones) and 4236 links 
Talebpour et al. 
(25) 

CACC • NGSIM vehicle trajectory data 
• Freeway segment configuration for I-290 in 

Chicago, IL 
Source: FHWA 2018 

Basic Roadway Infrastructure Physical Characteristics 
A basic configuration of the roadway infrastructure is required to define the study segments, links, 
or network over which the CAV systems is simulated. Similar to the demand and supply aspects of 
CAV AMS, the infrastructure configuration can be modeled after actual networks as in the case of 
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Talebpour et al’s (25) study where the authors modeled a segment of interstate I-290 in Chicago, 
Illinois or a hypothetical one as in the case of many other studies (17; 49). 

Baseline Aggregate Traffic Conditions 
Aggregate traffic conditions are required to calibrate/validate the various macroscopic and network 
traffic models (estimate their different parameters) to simulate actual traffic behavior and demand 
patterns. Those include aggregate measures of speed, density, and flows. For example, traffic data 
for the Austin I-35 corridor was used to calibrate the network simulations done by Melson et al. 
(66). 

Performance Characteristics of Connected and Automated Vehicle 
Systems 
The performance characteristics of CAV systems, such as time gaps, acceleration, sensor ranges, 
are key to evaluating the operation related impacts of those systems on the whole transportation 
network. For example, the sensor ranges can limit the safe speed at which automated vehicles can 
operate and hence the overall system flow (25). Due to the limited data on the actual behavior of 
CAV systems, their potential characteristics were assumed in most studies where sensitivity 
analyses were conducted using multiple scenarios (17; 37; 38; 42). Some studies assumed the 
CAV characteristics in the models using commercial ACC/CACC systems. For example, James et 
al. (41) calibrated the ACC models in their study using data collected by two 2013 Cadillac SRX 
vehicles with ACC systems operating under various acceleration/deceleration scenarios. However, 
due to the high efforts and expenses for collecting such data, the use of it is generally limited.  

Operations of Traffic Control Devices and Management Strategies 
Traditional traffic control information and strategies and algorithms can be integrated with CAV 
technology to design improved control systems that take advantage of connectivity and automation. 
For example, a traditional variable speed limit algorithm was integrated with connected vehicle 
technology to design an improved speed harmonization algorithm that can send speed limit 
messages directly to vehicles at the onset of shockwave formation (76).  

Vehicle Trajectories 
Vehicle trajectories provide the most complete information about the vehicles’ microscopic behavior 
such as speed, lane change, acceleration/deceleration which can be used to derive the 
macroscopic system behavior. In the case of CAV systems, vehicle trajectories are one of the key 
sources to validate and calibrate microscopic car following model for CAVs. This is because that 
some aspects related to the behavior of CAV technology can only be observed on the individual 
level, such as lane changes, time gaps, smooth acceleration.  

The traditional 2D vehicle trajectories can also be extended to 3D trajectories whereas CAV impacts 
can be evaluated on the network level. Such as route choice and response to information. As an 
example for using vehicle trajectory to validate car-following models, Talebpour et al. (94) used 
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vehicle trajectories collected through the Next Generation Simulation (NGSIM) program to calibrate 
the car-following models in simulation platform introduced to model mixed traffic. 

Field Experiments of Connected and Automated Vehicle Systems 
Field experiments on CAV systems are essential to better understand the actual behavior of CAV 
systems and obtain their performance characteristics. Those can range from small-scale 
experiments using a few connected or automated vehicles to large-scale deployment experiments 
such as the USDOT’s Connected Vehicle Deployment Program. As an example for small-scale 
experiments, Milanés and Shladover (50)  used up to four Nissan Infinity M56 ACC-equipped 
vehicles to generate vehicle response data to evaluate the performance of the ACC systems and 
build empirical ACC/CACC models. In another effort, James et al. (41) used 2 ACC-equipped 
Cadillac SRX vehicles to generate empirical data and calibrate their microscopic models.  

Large-scale experiments provide even better understanding of the CAV behavior at the system 
level and are an integral step in the technology development and deployment process for collecting 
data on actual behavior and performance. In the case of the Connected Vehicle Deployment 
Program, for instance, thousands of different vehicles (personal, taxis, UPS delivery vehicles) in 
addition to hundreds of intersections will be equipped with a form of communication (V2V/V2I/V2X) 
to test different safety, mobility, and sustainability applications of connected vehicles. The program 
implements a comprehensive data management and privacy plans for the three different locations 
in New York City, Wyoming, and Tampa. The data to be collected through the program will inform 
public agencies, academics, and industry professionals on the potential impacts of connected 
vehicles and motivate future research using the data. 
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Chapter 6. Overview of Existing 
Analysis, Modeling, and Simulation 
Tools for Evaluating Connected and 
Automated Vehicle Impacts 

This Chapter provides an overview of existing AMS tool that were used in the prior and current work 
reviewed in previous chapters.  

Platforms and Special Purpose Tools 
Because the impact of CAVs is so pervasive, at so many levels, tools by necessity entail the 
interaction of several different aspects and processes. To capture these interactions, model 
platforms are required, integrating various components relevant to the questions being asked 
(purpose of study). Platforms in this context are primarily conceptual analytical constructs that are 
embedded in a software tool. They typically entail a collection of models representing interacting 
agents or processes. Platforms also typically offer a foundation upon which additional capabilities 
may be built, albeit with varying degrees of difficulty and effort. 

The transportation modeling domain has been dominated historically by two main types of 
platforms: (1) Modeling tools for planning, intended for application at the urban and regional level; 
and (2) Simulation models for operations, primarily applied to facilities or urban/suburban 
subnetworks. The former is typified by aggregate four-step models, which subsequently 
incorporated individual choice models for certain choice dimensions such as modal split, but with a 
highly simplified representation of congestion and operational aspects (108). The latter is typified 
by traffic microsimulation tools, which represent vehicular traffic interactions through individual 
maneuvers of car following, lane changing and gap acceptance.  

These two strands started converging in the 1990’s primarily through the development of 
simulation-based dynamic network traffic assignment (DTA) tools (109). These provide realistic 
representation of flow processes on links and at intersections, and individual level representation 
of individual travel choices of route, departure time and mode. Applicable to large networks, 
simulation-based DTA tools have continued to advance in terms of both representation as well as 
computational performance and have become the platform of choice for examining network and 
corridor interactions of user choices and traffic processes. Likewise, traffic microsimulation tools 
have moved towards DTA models by adding route assignment capability, and actually tracking 
vehicles from origin to destination instead of moving them probabilistically according to specified 
turning percentages. 
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Different physics have been used to represent flow processes in these platforms. The main 
differentiation has been in terms of detail of representation, with micro, meso and macro being the 
main labels for this differentiation. Macro models are essentially analytical relations between 
average quantities characterizing the state of a link or facility, whereas micro models move traffic 
as a result of context-dependent decisions made by individual driver agents. By moving individual 
vehicles (particles) at prevailing local speeds determined consistently with the respective prevailing 
local concentrations, typically using analytical relations, mesoscopic models retain the flexibility of 
individual vehicle or traveler representation with the convenience, robustness and ease of 
calibration of closed-form analytical equations. DTA tools have been developed with all three types 
of physics; the discussion here applies primarily to particle-based simulation, where individual 
vehicles/entities are tracked and used in conjunction with either meso- or micro-level physics.  

The current state of the art, albeit not fully the predominant state of the practice, in transportation 
planning models consists of integrating simulation-based network DTA platforms with activity-based 
models (ABM) of travel demand and traveler behavior. An example implementation for the Chicago 
region is presented in Chapter 4. In practice, these tools remain only weakly integrated, if at all, 
with occasional interfacing for certain applications. Such integrated efforts are typically built on the 
network platform, i.e. the DTA tools, because computational efficiency of the resulting tool depends 
on the ability to execute path finding algorithms on large-scale networks. 

Examples of simulation-based DTA platforms used in research, practice, or both, include 
DYNASMART-P and DYNAMIT-P, which were originally developed for FHWA to support ITS 
deployment studies. Both combine particle-based mesoscopic simulators with path finding 
algorithms for traveler route choice decisions; however certain important details differ, with 
important implications for ability to represent various aspects of CAV deployment, as discussed in 
Section 2.6. Both have continued active development to advance the state of the art, and many of 
the innovations introduced in these tools have been adopted as de facto standards in both other 
research tools as well as commercial offerings. Several offshoots of the original DYNASMART-P 
framework have been spun off, including VISTA, DynusT, DTALite, and DIRECT—all share the 
same modeling philosophy, though with possibly important differences for CAV impact modeling. 

In addition to these university-generated tools, commercial platforms for meso-level DTA have 
emerged, generally as complement to static macroscopic assignment tools, or as add-ons to 
microscopic simulators. Examples include TransModeler (TransCad), DYNAMEQ (EMME), Cube 
Voyager, VISUM, among others (in parentheses are related static platforms by the same vendor). 
These are depicted in Figure 7, along the spectrum of micro-meso-macro. There is considerable 
variation across the commercial packages, which unfortunately tend to be somewhat opaque given 
the absence of documented refereed publications describing these tools. This is a limitation for 
CAV-related development, which requires detailed knowledge of and access to specific algorithmic 
components. 

A third category of simulation-based network modeling tools, which were originally intended as 
agent-based activity-based demand models, includes the FHWA-funded TRANSIMS and its 
evolution into MATSIM in Switzerland. The latter adopts a non-standard cellular-automata traffic 
flow representation known to not be consistent with traffic flow theories, but allowing fast 
computation for large networks, albeit when not seeking to reach equilibrium states. It also allows 
flexibility to route agents and execute elaborate rule-based activity schedules. 
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Figure 7. Range of network modeling platforms. (109) 
 

In addition to DTA platforms, which have largely supplemented or co-opted static macro network 
tools for new model investment by agencies, the other major category of simulation platforms 
consists of microscopic simulation tools intended primarily for traffic operational applications. 
Originating in the 1970’s with FHWA-supported NETSIM, which subsequently evolved into the 
current CORSIM, the domain experienced substantial commercial growth with the advent of ITS 
and adaptive signal control strategies that required fine-grained representation for design and 
evaluation. Three primary commercial platforms appear to dominate the market internationally: 
VISSIM, AIMSUN and PARAMICS. Like CORSIM and before it NETSIM, these are time-based, 
discrete event, discrete particle simulators, with heavy reliance on Monte Carlo methods to 
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generate random variable realizations of a driver’s every maneuver. With similar underlying logic 
(albeit different specific behavioral rules for drivers), the products have sought to differentiate 
through the quality and features of their graphical user interfaces, which continue to evolve to retain 
a modern, current look and functionality.  

Other microscopic traffic operational microscopic platforms have also been developed and gained 
some traction, usually in specialized markets. These include TransModeler microscopic simulator, 
which is patterned in part on MITSIM, and is built on a based TransCad network; INTEGRATION, 
used primarily at Virginia Tech, which evolved from a mesoscopic version to a microscopic platform; 
Cube Avenue, and the open source SUMO (Simulation of Urban Mobility) developed at the German 
DLR Institute of Transportation Systems (110). 

As expected, and as discussed in subsequent Chapters, off the shelf commercial packages for 
either strategic or operational applications are generally not capable of representing the particular 
aspects of CAVs that impact both operational performance and users’ behavior. In some instances, 
modification of certain aspects through APIs is possible, but control of how the API is used in the 
overall simulation is generally not available. For this reason, researchers examining these 
questions have developed special-purpose tools focused on the particular questions of interest to 
their scope of study. These are typically not comprehensive or integrated platforms, but rather 
simplified representations of the future system in all but those aspects deemed by the researchers 
to be essential to their question of interest. 

A key question for developers and agencies interested in developing a AMS capability for CAVs is 
whether to add CAV capabilities to existing commercial or otherwise established platforms, thereby 
taking advantage of graphical user interfaces and other useful components; or whether to take a 
special-purpose tool or component and integrate it in a larger, custom-targeted platform built around 
those capabilities. The simple answer to this question is “it depends”—on several factors, having 
to do with the structure and logic of the platform itself, and the degree to which the software could 
accommodate the desired features.  

Essential Tool Components for Connected and 
Automated Vehicle Impacts 
In the modeling framework discussed in Chapter 2. , four components (26) stand out in their 
significance for CAVs: (1) Demand Effects: Major Activity Shifts and Mobility Use; (2) New Mobility 
Industry Supply Options; (3) Network Integration; and (4) Performance (Flow) Models. These are 
depicted in Figure 8, and briefly explained below.  

Demand Effects: Major Activity Shifts and Mobility Use 
CAVs impact activity patterns at the individual and household levels in several ways (55) that may 
not be captured in existing demand models, even including the most advanced activity-based 
models (ABMs). Beyond the safety and efficiency aspects expected of CAVs (8), two key aspects 
that are likely entirely new with vehicles at automation levels (15) 4 and 5 are: (a) these vehicles 
enable multitasking, hence may change in-vehicle time valuation; and (b) their role as a robotic 
assistant for households and businesses (58), which can go shop, pick up kids– all mobility chores 
imposed by auto-centric suburban lifestyle. These features have implications on the demand side, 
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for vehicle use/sharing within households. They require modeling the “Chauffeur” features of 
waiting and/or showing up when needed, possibly generating additional deadhead (repositioning) 
trips and VMT, even as the vehicle goes and waits in remote parking. 

New Mobility Industry Supply Options 
CAVs will enable new forms of mobility supply, such as new forms of car sharing with greater 
convenience than existing programs. Car-sharing marketplaces may emerge– e.g. driverless Uber. 
Reducing cost and uncertainty of the sharing model may reduce the motivation for individual 
ownership (51; 82; 84). Thus the realm between personal transportation and public mobility could 
widen considerably to include various hybrid forms (61). Scenarios regarding restructured public 
transit systems in which, for example, shared mobility services provide first and last mile access to 
higher frequency, high capacity lines become relevant, and must be represented using the AMS 
tools.  
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Figure 8. Four key modeling components of CAV impacts. 

Network Integration 
Integrating the behavior of different agents (travelers, mobility service providers, transit and network 
managers, freight shippers and carriers) in a network context in the presence of CAVs introduces 
many challenges that existing network modeling platforms may not be able to adequately address 
without varying degrees of modification. One basic question pertains to the appropriate behavioral 
notion for network assignment—for instance, would user equilibrium (UE) still make sense when 
fleet managers control the operation of large shared mobility fleets and could therefore seek routing 
policies that contributes the social (or system) optimum (SO), especially when vehicles are moving 
empty in repositioning moves?  Some existing network modeling platforms that can explicitly allow 
multiple user classes with different assignment rules, including SO, and solve for the corresponding 
fixed points (equilibria), e.g. DYNASMART, would be able to represent these situations. However, 
many of the other tools have not implemented such multi-class equilibrium capabilities. Similarly, 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 
 

74 |  Development of an AMS Framework for Connected and Automated Vehicle Systems 



 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  75 

to reflect the role of mobility-as-a-service fleet managers, as well as the manner in which 
households share the use of automated vehicles, CAVs require tour-level, not trip-level network 
loading and routing. The same requirement exists for effective ABM-DTA integration. 

Performance (Flow) Modeling 
The most direct impact of CAVs on network performance will result from the operational 
performance characteristics of the vehicles in the traffic stream, and the control algorithms enabled 
by and deployed with varying degrees of V2V and V2I connectivity (18). While greatly dependent 
on decisions made in the commercial marketplace, public agencies, and regulatory bodies, 
understanding and modeling these impacts under a given set of assumptions about technological 
features, deployment scenarios and control measures is an essential AMS requirement that lies 
mostly in the realm of traffic physics. Several existing studies in the literature have attempted to 
address some of these questions, particularly with regard to throughput (20; 37-42), flow stability 
(21; 24; 25), and the performance of various control strategies (43-46) such as CACC (17; 22; 47-
50) and speed harmonization (101; 111) in a connected environment. Flow modeling aspects 
require additional calibration as technology prototypes appear, and human behavior adapts in 
mixed traffic with CAVs. 

Tools for Evaluating Supply Changes 
The major supply change expected from deploying CAV technology is the emergence of new 
mobility options, mainly in the form of Shared Automated Vehicle (SAV) fleets (53; 56; 57). The 
emergence and adoption of CAVs has the potential to increase the market share of shared mobility 
service options via eliminating the cost and performance limitations of human drivers, enabling a 
broader array of service and price bundles. Many mobility service providers as well as tech 
companies and car manufacturers plan to employ AV fleets to provide transportation services. SAV 
differs from current sharing services in two main aspects: (1) the robotic driving behavior of vehicles 
is different from the human driving behavior, and will likely impact the overall performance of the 
system, and (2) the mobility service owner would have full control over the system, unlike services 
using human drivers, and can optimize the service to serve different objectives such as minimizing 
costs or maximizing quality. 

To compete effectively with personal vehicle ownership in terms of cost and quality of service for 
all trip purposes, including the commute trip, fleet managers will seek to operate their fleets 
efficiently so as to minimize operational costs while maximizing quality of service. Different 
strategies can be devised for dynamically operating an AV fleet to provide passenger transportation 
service; these will depend on the business model of the provider and requirements for the services 
offered. Many potential AV fleet service options can be envisioned, varying in terms of one or more 
of their service dimensions, identified in the comprehensive taxonomy presented by Hyland and 
Mahmassani (59). These potential fleet business models are depicted in Figure 9.  Additional 
strategic dimensions may include service area (city, suburbs, rural) and range of trips (short vs. 
long distance). 

Three main aspects of mobility supply options would need to be addressed in an AMS system 
intended to examine CAV impacts: (1) Predicting the emergence of specific services (and their 
characteristics), along with shifts in the transit system, (2) Generating optimal plans to operate 
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these fleets and services, and (3) Evaluating the impact of these services on the transportation 
system. The first of these is not within the capability of any tool, and must generally be handled in 
the form of input scenarios. The second is essential to emulate the manner in which the vehicles 
are deployed over the network, including the times and routes they follow. The third integrates the 
first two with a demand capability to predict network-level impacts on mobility and other metrics. 
The second and third aspects are often combined, with the latter serving as the performance 
evaluator for a given fleet operational strategy based on the former.  
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Figure 9. Potential AV fleet business model variants. (59) 

None of the above three capabilities are offered by general network modeling platforms. Algorithms 
for the second aspect (optimal fleet operation) could be devised through new implementations and 
application of some existing algorithms; however CAVs introduce unique elements that make direct 
application of existing procedures either infeasible or suboptimal. Despite the vast and diverse fleet 
management and vehicle routing literature, the nature of the CAV fleet operational problem is 
fundamentally different than problems in the existing literature. The notion of demand requests that 
require immediate assignment and pickup within a few minutes is not present in the freight fleet 
management and dynamic vehicle routing literature. Moreover, the demand requests in the existing 
passenger vehicle fleet management literature, such as the dial-a-ride problem, and even the 
immediate request taxi-dispatch problem (112) are significantly less urgent than the AV fleet 
problem. Ambulance dispatching and ambulance fleet management problems clearly match and 
exceed the urgency of the AV fleet problem; however, the ambulance fleet size and 
productivity/utilization of ambulances as well as the frequency of ambulance demand requests are 
much smaller relative to the AV fleet problem.  
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As noted, general AMS platforms do not have the capability to evaluate the impacts of SAV or 
analyze the system’s operations. Therefore, most studies developed their own AMS tools to answer 
questions related to managing SAV fleets such as the number of vehicles required, travel time, 
costs, etc. Most of the tools developed are agent-based simulation platforms that capture the 
interactions between SAVs, travelers, and fleet managers (dispatchers).  

An example of such tool is an event-based simulation framework built by Levin et al. (60) to examine 
the impacts of replacing personal vehicles with SAVs in downtown Austin, Texas. Another example 
of a CAV AMS tool built specifically built for modeling SAVs is the agent-based simulation platform 
introduced by Fagnant and Kockelman (56) to explore the potential impacts of dynamic ride sharing 
for a system of SAVs. 

In both of the above studies, the dispatcher function relies primarily on simple strategies matching 
customers to the nearest vehicle; both employ ad-hoc idle vehicle repositioning strategies to re-
locate empty CAVs to locations where the expected future demand rate is greater than the number 
of empty vehicles in the area. Such greedy rules can be shown to produce suboptimal results 
compared to more complete optimization formulations. Hyland and Mahmassani (113) have 
developed efficient dispatching strategies to operate an AV fleet. Their approach relies on an integer 
programming formulation that is solved in real-time to assign AVs to travelers. Further, these shared 
AV fleet services have been recently integrated within a multimodal transit network micro-
assignment platform to capture the network-level impacts of these services for first/last mile access 
to restructured public transit lines (114).  

Tools for Evaluating Demand Changes 
The availability of new mobility forms through CAV systems (27; 28) in addition to the expected 
improvements to current transportation systems by the new technology can affect the activity 
patterns (29-33) and mobility choices of travelers (34; 35). Those changes can involve household-
level decisions (52), such as owning a car (51), or individual trip decisions (36) such as departure 
time and route choice. 

To evaluate the aforementioned impacts, researchers have mainly used two types of 
complementary tools(115): travel demand models (83; 85) and agent-based simulation approaches 
(53; 54; 56; 81). Demand models (including mode choice and activity based models) use current 
travel behavior, demographics, employment, and modes to project future demand patterns. Since 
actual travel data using CAVs is not yet available, CAV studies using these models rely on a number 
of assumptions regarding the characteristics of CAVs, and the relative magnitudes of travelers’ 
preferential weights associated with these characteristics. These are sometimes based on stated 
preference, typically collected through surveys and more or less elaborate stated choice 
experiments. Thus, the forecasting power of these models is rather limited, as the assumed CAV 
characteristics and the stated travel behavior might be substantially different from the actual one 
when the new technologies become available. 

Activity-based model (ABM) systems constitute the present state of the art in demand forecasting 
for planning applications. Several large metropolitan planning organizations (MPOs) have invested 
in the development of customized ABM capabilities. Implementations typically differ in terms of level 
of detail, and degree of complexity in terms of the choice dimensions and interactions captured in 
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the model(116). Two well-documented examples include CT-RAMP (117), developed by PB Inc., 
and implemented in at least 10 metropolitan areas across the US, and CEMDAP (118), developed 
at UT-Austin primarily for applications in Texas and tested with NCT COG (North Central Texas 
Council of Governments, the MPO for the Dallas-Ft Worth region). The structure of the CT-RAMP 
version implemented for the Chicago area is depicted in Figure 10. 
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Figure 10. CT-RAMP activity-based model structure for Chicago. (117) 
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Demand models, especially the more elaborate activity-based model systems, are often 
implemented for forecasting purposes as part of agent-based simulations, where individual agents 
consist primarily of potential travelers. Accordingly, agent-based simulation tools are not really 
distinct demand forecasting tools as they ultimately depend on the behavioral engine driving the 
agents’ simulated choices. For instance, implementation of individual-level choice models in the 
context of network particle simulation platforms would be an example of agent-based 
implementations.  

Agent-based simulation approaches have been elaborated to answer specific research questions 
regarding CAV impacts through interactions amongst various agents. The main advantage of 
agent-based tools is that the rules of interactions between travelers (agents), travel modes, and 
the transportation network can be set/modified by researchers to adapt to CAV systems. While 
those rules are usually based on actual behavior, the interaction rules related to CAVs are usually 
assumed, or they may be based on limited field tests. This limits their ability to capture the potential 
travel behavioral changes anticipated with AVs; for instance, the “chauffeur” functionality, which 
might have drastic changes on intra-household activity and travel behavior, would be difficult to 
capture without actual data or sophisticated experimental approaches. 

An example of demand models with CAV capabilities is the modified Seattle region activity based 
model by Childress et al. (83), which was used to explore the potential impacts of AV on Vehicle-
Mile-Traveled (VMT) and Vehicle-Hour-Traveled (VHT). Another example is the modified Atlanta 
regional activity based model developed by Kim et al. (85). An example of agent-based 
implementations is the methodology developed by Chen et al. (54) to model the operations of 
electric-powered SAVs. The framework has four main modules: charging station generation, SA-
EV fleet generation, waitlist, and strategic vehicle relocations.  

Tools for Integrated Network Performance 
Activity-Based Models (ABM) and Dynamic Traffic Assignment (DTA) procedures are advanced 
models on the demand and supply sides of transportation planning, respectively. While 
conceptually and theoretically inter-related, in practice these models have developed along 
essentially independent tracks. Simulation-based DTA tools allow modelers to incorporate 
disaggregate information into the estimates of travel costs that can be fed back into the ABM. 
Hence, most DTA tools used in practice have adopted a simulation-based approach to capture the 
dynamics of flow propagation in networks (109). 

The need for achieving ABM-DTA consistency was recognized through the SHRP-2 C-10 project, 
which conducted two case applications of integrating different pairs of ABM and DTA tools. These 
applications addressed practical issues of interfacing tools developed independently and for 
different purposes, using inconsistent representations of the transportation system and the demand 
patterns using it. Their experience highlighted the challenges and practical difficulties in this 
process, and also brought out the need for stronger theoretical and methodological foundation on 
which to build such integration. Four follow-on projects were awarded to different areas as SHRP-
2 C-10 was unwinding, with a focus on application issues pertaining to the specific areas. Interim 
conference presentations on these applications can be found at 
https://www.fhwa.dot.gov/planning/tmip/publications/other_reports/integrated_models/index.cfm.   

https://www.fhwa.dot.gov/planning/tmip/publications/other_reports/integrated_models/index.cfm
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One particular issue that is fundamental to such integration, and particularly relevant to the impact 
of CAVs, is how to achieve the equilibrium of users’ schedules within the context of ABM-DTA 
integration. This issue was addressed in the ABM-DTA integration project conducted for the 
Chicago Metropolitan Agency for Planning (CMAP) (117). That implementation presented a novel 
equilibrium state definition for the ABM-DTA integration framework, and an algorithmic procedure 
to achieve it that takes into consideration individual schedule consistency between ABM and DTA 
as well as the usual equilibrium conditions in the multi-modal transportation network (119). 
Furthermore, it develops an approach for activity schedule consistency at the DTA level as part of 
an overall integration framework in order to improve the rate of convergence to the overall 
equilibrium state for the integrated model. 

As households interact with CAV capabilities and new SAV options, the ability to model activity and 
tour schedules, and integrate them with the network modeling platform becomes crucial to the 
requirements of this project. The CMAP ABM-DTA tool allows that, taking advantage of a feature 
that has been available all along with the DYNASMART software, but it does not address the 
question of how the tours would be changed (as discussed in the previous section on modeling 
demand changes). 

Likewise, it is essential for the CAV impact assessment platform to be able to route vehicles 
controlled by SAV fleet managers. As discussed earlier, it is not clear that User Equilbrium concepts 
are applicable to this situation. More importantly, there are interesting opportunities to improve 
overall system performance, and to nudge it towards a system optimum (SO) by controlling the 
movement of AVs, especially those driving empty to be repositioned or to their next pick up 
destination. As noted, a minimum requirement in this regard is the ability to allow different users or 
user classes to follow different assignment rules, including the ability to find fixed points or equilibria 
for such multi-class networks. These capabilities are reviewed in Chapter 4 along with those 
required for the demand changes. 

Tools for Evaluating Operational Performance 
CAV technology is expected to affect the operational performance of transportation systems in 
different aspects (62) including safety (9; 63), mobility (1; 7), and sustainability (64). The technology 
is expected to improve traffic safety through reduction of accidents caused by human error, increase 
throughput (65) through driving at higher densities with the help of highly responsive CAVs, and 
improve traffic control (19) at intersections (67-74) through wireless communications.  

To evaluate those impacts effectively, however, the distinct behavior of CAVs (23) needs be 
captured in the AMS tools. Given the required detail at the individual vehicle level, the logical type 
of methodology consists of traffic microsimulation. Microsimulation provides the highest degree of 
detail in capturing the characteristics of CAVs including but not limited to car-following behavior, 
lane-changing, sensor range, wireless communications (89), reaction time, etc. It is the only type 
of simulation that is capable of simulating mixed traffic conditions at different CAV market 
penetrations as each vehicle is simulated individually. Therefore, most of prior/current studies on 
the operational performance impacts of CAVs relied on microsimulation tools. The main limitation 
for this type of simulation is the computing power it requires to process and analyze the high amount 
of detail associated with the simulated vehicles. This can limit the amount of time and the network 
size for which simulations are run.  
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However, for strategic-level CAV analyses of large regional networks, running detailed micro-
simulation of all traffic maneuvers is neither necessary nor practical. Developing macroscopic 
relations for either facilities or networks requires observation of actual systems at different 
penetration levels of the technologies, which is not possible under the current situation—as these 
technologies remain in the very early stages of test deployment. Thus it is possible to rely on 
microsimulation experiments conducted for facilities and subnetworks to produce macroscopic 
fundamental diagrams and other performance characteristics that could then be used in conjunction 
with mesoscopic simulation-based network modeling tools to produce performance metrics at 
varying levels of spatial and temporal detail. Mesoscopic models provide a fidelity that is in between 
microscopic and macroscopic models. A recent example of incorporating the market penetration of 
connected vehicles in a mesoscopic tool was illustrated by Mittal et al. (120); the input speed-
density parameters were generated using a special-purpose microsimulation tool (described in 
Chapter 5). Trajectories obtained from the network simulations then formed the basis for calibrating 
network-wide fundamental diagrams (NFDs). 

In addition to modeling mixed flow impacts of CAV systems, modeling emerging traffic control and 
management strategies enabled by the new technology is also challenging. A particularly important 
aspect of emerging control algorithms is wireless telecommunications. However, most AMS tools 
lack an abstract representation of telecommunications in their models, its performance, and its 
impacts on driving behavior. Alternatively, they rely on specific assumptions about the V2V/V2I 
dynamics and the flow of information protocols, which can affect the realism of the control 
algorithms’ performance. Microsimulation is also used in this case for modeling those strategies as 
it provides enough details to capture the interactions between the vehicle control devices (or the 
lack of them) and the infrastructure. Analyzing the emerging control strategies is done either by 
developing special purpose tools to evaluate specific control strategies or by integrating them into 
commercial platforms. 

Commercially available simulation tools, such as VISSIM (121) from PTV and Aimsun (122) from 
TSS, do not currently have the capability to model CAV systems but will likely have that in the near 
future. However, those tools have means for enabling users to code their own models to represent 
special cases that are not included in the pre-defined default models, which are a primary 
mechanism for current researchers interested in using these tools to evaluate CAV alternatives. 
However, the parameters for these models would still need to be assumed, as the data required to 
calibrate these models is not likely to be available in the near future. 

In addition to coding special CAV characteristics into existing tool, some researchers have 
developed simulation platforms that are specifically designed to model mixed traffic with CAV 
systems. An example of that is an integrated simulation platform developed at the Northwestern 
University Transportation Center that is capable of modeling human, connected, and automated 
vehicles in addition to modeling V2V/V2I wireless telecommunications.  
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Chapter 7. Identified Gaps in Existing 
Connected and Automated Vehicle 
Analysis, Modeling, and Simulation 
Capabilities 

This chapter identifies the main gaps where existing capabilities do not meet those required for the 
envisioned CAV AMS system. The envisioned CAV AMS system is an integrated system developed 
in Task 3 to fulfill the needs of users, researchers, and model developers for evaluating the far-
reaching impacts of CAV technology on multiple levels. The system is discussed in detail in the 
Task 3 reports (5; 6). 

Following the structure of the methodological framework introduced in Chapter 2. , this chapter 
categorizes the identified gaps in CAV AMS capabilities into four main areas: 

1. Gaps in evaluating demand changes
2. Gaps in evaluating supply changes
3. Gaps in evaluating operational performance
4. Gaps in evaluating integrated network performance

The remainder of this chapter will discuss the gap identification process and the main gaps in each 
category and their potential impacts on CAV AMS. In addition, the chapter will briefly discuss 
suggested approaches to address those gaps. 

Connected and Automated Vehicle Analysis, Modeling, 
and Simulation Gap Identification Process 
The gap identification process in this project is a multi-step process that builds on the reports of 
previous project tasks (2; 3; 5; 6). The first step was to identify user needs for CAV AMS. Those 
mainly include the (1) capability to evaluate strategic impacts of CAV systems, such as the activity 
pattern changes and the emergence of new mobility options, (2) the capability to evaluate 
tactical/operational impacts in the presence of mixed traffic flows, and (3) the integration of all 
system components to better capture the interactions among the different agents (travelers, 
mobility service providers, transit, etc.) in a network context. The user needs identification was 
performed in Task 3 (5; 6) where a comprehensive methodological framework was formulated for 
evaluating the strategic (supply and demand) and operational impacts of CAV systems. 
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Furthermore, the requirements of an envisioned CAV AMS system were identified in the same task. 
Those include functional, performance, data, and integration requirements. Identifying the user 
needs and the system requirements in above-mentioned task was essential for conducting the gap 
analysis in this report. In addition to providing a vehicle for discussion and stakeholder engagement, 
the identified needs and system requirements were later used as a benchmark for identifying gaps 
in existing AMS tools. 

The second step was to conduct a comprehensive review and assessment of existing CAV AMS 
capabilities. The comprehensive review included an overview of related literature, reports, and 
planned activities relating to CAV AMS that was done in Task 4 (2). The review also included an 
identification/assessment of existing and emerging data sources which are required to support CAV 
AMS, which was done in Task 5 (3). While supporting data is fundamental for the development, 
validation, and operation of AMS tools, it is even of higher importance in the case of CAV systems 
as the data related to their operations/impacts are very limited. Finally, the comprehensive review 
included a capability identification of existing AMS tools for analyzing CAV applications at the 
strategic and operational levels in Task 6 (3). In this task, the identified capabilities of existing tools, 
whether they are platforms or special-purpose tools, were assessed based on the requirements of 
the envisioned CAV AMS system introduced Task 3 (5; 6). 

The final step of the gap identification process, which is the main part of this report, is to consolidate 
the findings of previous reports to identify the main areas where existing capabilities do not meet 
the identified requirements for evaluating the impacts of CAV systems. In addition, the report 
assesses the identified gaps across different dimensions to better understand their impacts. Those 
dimensions include the level at which the gaps exist, whether being a platform-level or component-
level, and the type of the gap, whether it is methodological, data-related, or implementation-related. 
Finally, the report provides an initial recommendation on prioritizing those gaps and potential 
solutions to address them. The remaining of this chapter provides descriptions of the different 
dimensions across which the gaps were assessed. The gap identification process is summarized 
in Figure 11. 



 

 

 © 2018 Hani Mahmassani  
Figure 11. Gap identification summary. 

System Level: Component and Platform 
The envisioned CAV AMS system has four main components for modeling the impacts of CAV 
systems on the strategic and operational levels. Three of those modeling components provides 
distinct functionalities for modeling the supply, demand, and operation related impacts of CAVs 
while the fourth component is related to integrating all of the above three components at a platform 
level. A platform in this context is primarily a conceptual analytical construct that is embedded in a 
software tool. It entails a collection of models representing the interactions among different 
agents/processes. 

Component-level gaps refer to those related to any of the three specific components in the 
envisioned CAV AMS system: demand changes, supply changes, or operational performance. For 
example, integrating the multitasking feature of automated vehicles is a gap that is specifically 
related to modeling the demand change component of the system and therefore is considered a 
component-level gap. On the other hand, integrating the operational performance impacts of CAV 
systems in demand models to produce more realistic impacts is a platform-level gap as it relates 
to how the system functions as a whole. The differentiation of those gaps with respect to their level 
is important to determine how to approach and prioritize those gaps. 
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Gap Type: Methodological, Data-related, Implementation-related 
Three main types of gaps were identified in existing CAV AMS capabilities: methodological, data-
related, and implementation related. Methodological gaps refer to those where fundamental and 
unique aspects related to CAV systems are missing from current models or tools. For example, the 
multitasking functionality is a unique feature of AVs that is often missing from current demand 
models or not explicitly/appropriately represented. Wireless telecommunication and sensor 
reliability are two examples of the fundamental features of CAVs that is often missing in 
performance models. 

Data-related gaps refer to those where the modeling capabilities exist or are relatively developed 
but the supporting data to validate/calibrate those capabilities are not available. For example, many 
car-following models were developed to represent CACC driving behavior, however, empirical data 
for validating those models are often missing except for few cases where small-scale field studies 
were conducted. Another example is lack of data on the impact of the anticipated “Chauffeur” 
feature of AVs on household activities.  

Implementation-related gaps refer to those where the capabilities exist but are not implemented to 
capture the full interactions of CAV systems. Those gaps are mainly related to the integration of 
different modeling components such as integrating traffic flows generated from demand models in 
performance model to evaluate their network impacts.  

Gap Prioritization 
The gap analysis in this report offers a preliminary prioritization of gaps from the point of view of 
the research team. Three priority levels were considered: (1) critical, (2) important, and (3) 
desirable. Critical gaps refer to those that should be addressed as a first step for developing a CAV 
AMS system. For example, the lack of supporting data to validate CAV car-following and lane-
changing models is critical for an accurate evaluation of the performance impacts of CAV systems. 
Important gaps refer to those that are not as essential as critical gaps but are important for an 
improved representation of CAV systems, such as the lack of practical and simplified representation 
of the effect of wireless telecommunications on the performance of CAV systems. Desirable gaps 
refer to those that are important to be addressed in the longer term such as predicting the 
emergence of new mobility options.  

Gaps in Existing Connected and Automated Vehicle 
Analysis, Modeling, and Simulation Capabilities for 
Evaluating Demand Changes 
The new forms of mobility (27; 28) enabled by CAV technology and their expected improvements 
to the performance of transportation systems could lead to fundamental changes to the transport-
related decisions. Those changes could affect the activity patterns (29-33) and mobility choices of 
travelers (34; 35) at multiple levels. On the higher level, the potentially improved features of the 
new mobility options, such as the higher safety and lower costs of SAVs, could affect household 
car ownership (51). On the tactical level, some of the new features of AVs - mainly the availability 
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to multitask during the trip - can affect individual trip decisions (36) such as departure time and 
route choice. 

Researchers have mainly used two types of complementary tools (115) for evaluating the 
abovementioned impacts: travel demand models (83; 85) and agent-based simulation approaches 
(53; 54; 56; 81). Demand models (including mode choice and activity-based models) use current 
travel behavior, demographics, employment, and modes to project future demand patterns. Since 
actual travel data using CAVs is not yet available, CAV studies using these models rely on a number 
of assumptions regarding the characteristics of CAVs, and the relative magnitudes of travelers’ 
preferential weights associated with these characteristics. Agent-based simulation approaches 
have been elaborated to answer specific research questions regarding CAV impacts through 
interactions amongst various agents. While the interaction rules in those tools are usually based 
on actual behavior, the rules related to CAVs are usually assumed, or they may be based on limited 
field tests. 

The above-mentioned tools help answer some of the main questions related to the demand 
changes that are expected with the deployment of the new technology. Those include questions 
related to the adoption of the new technology (27; 28; 35; 81; 82), travel mode shifts  (34; 36; 83), 
vehicle ownership (52-55), and VMT impacts (27; 31-33; 54; 55; 64; 83; 85).  

The main limitations of existing CAV AMS capabilities for evaluating the demand-related impacts 
of the new systems are mainly related to (1) the lack of data on the unique characteristics of CAVs 
and (2) the explicit integration and validation of the multitasking feature of AVs in those capabilities. 
Those limitations are discussed in more detail in the following gaps. 

Data Describing the Unique Characteristics of Connected and 
Automated Vehicle Systems as a New Option in Demand Models 
One of the main gaps in evaluating the potential demand changes caused by CAV systems is the 
lack of data on the unique characteristics of CAV systems as a new mode in existing AMS tools. 
Those characteristics generally make the new CAV-enabled modes safer (9; 63), more sustainable 
(64), and more economical (26) than current options. For example, AVs are expected to 
reduce/eliminate roadside accidents that are caused by human error (8). They are also expected 
to reduce emissions through smooth acceleration/deceleration (53) or through economical traffic 
control algorithms such as ECO-CACC (102). The cost of SAV trips can potentially be lower than 
those made by current shared ride system or hailed-ride systems as it eliminated drivers’ costs. 

While existing AMS capabilities integrate some of the unique characteristics to evaluate the impacts 
of the new systems, the extent to which those characteristics affect the different parameters in the 
tools is usually assumed and not based on actual observation. Some of those assumptions are 
based on performance (simulation) models that are also usually not validated using actual data. 
For example, some modified activity-based models integrated the AV mode by increasing the 
capacity of the road by a certain percentage, reducing operational costs, or in-vehicle time utility 
(83; 85). Other simulation tools have implemented similar assumptions regarding the performance 
of CAV systems (32). 
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Using different assumptions regarding the characteristics of the new systems instead of basing 
these assumptions on actual observations can have profound impacts on the prediction accuracy 
of the demand changes caused by CAVs. This is because most of these unique CAV characteristics 
such as lower cost, different travel time value, or higher comfort are directly related to the mode 
choice and travel behavior. For example, using a very low value of travel time for AVs may 
overestimate the mode shift towards those vehicles. It may also overestimate the impact on VMT 
as travelers may tolerate longer distances in AVs. Similarly, using a lower than actual assumption 
about travel costs for SAVs may overestimate the shift towards those vehicles and the reduction in 
household car-ownership.  

This gap would be classified as occurring at the “component-level” as it is mainly related to the 
Demand Changes component of the envisioned CAV AMS system. This gap is considered “data-
related” because existing AMS capabilities would be able to integrate the unique characteristics of 
CAVs had data on those characteristics been available. Finally, the initial priority to address this 
gap is “important”; while it can affect the impact evaluation accuracy of any AMS tool regardless of 
its complexity or its interaction rules, collecting the data necessary for demand models highly 
depends on the actual deployment of the systems. 

Potential Ways to Address this Gap 

Addressing this gap may require performing field experiments to collect actual data. Since CAV 
systems are not deployed in the field yet, this could be done using prototype systems or commercial 
systems with automated cruise control. For example, CAV prototypes such as those tested by Uber i 

Vehicles with commercial ACC can be used to estimate the actual fuel consumption and estimate 
lower costs. This may also require a fully comprehensive life cycle analysis to estimate those costs. 
In addition, simulation tools can also be used to extract CAV characteristics if those tools are 
validated/calibrated using driving behavior data of actual CAVs. 

For estimating value of travel time, a mode choice experiment using a stated preference survey 
can be used. The respondents would be presented with hypothetical trips (distance, cost, mode) 
where AV as one of the available modes. Those scenarios should cover a wide range of trip for 
different purposes. For example, long work trips, short shop trips, long recreational trips, etc. The 
answers to those questions can then be used to estimate the value of travel time for AVs. It is worth 
mentioning; however, that in the case of stated preference survey, the answers may not reflect 
actual behavior and therefore may affect the estimated values. 

A last-resort option, which is implemented by most studies when faced with uncertainty about some 
of CAV characteristics is to develop multiple scenarios/values for those characteristics and evaluate 
their impacts. While this method is the cheapest/easiest to provide a range of impacts to reduce 
the uncertainty and is better than using one assumed value that may be incorrect, it does not solve 
the root of the gap which is the lack of validated data. 
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Integrating the Multitasking Feature of Automated Vehicles in 
Demand Models/Components 
The second major gap in current CAV AMS capabilities is explicitly integrating the multitasking 
feature of AVs in demand models or the demand component of AMS systems. Multitasking is maybe 
the most important characteristic of AVs with potentially the highest impact on the activity pattern 
shifts. Travelers would no longer be constrained by the unproductive time spent in their personal 
vehicles. On the contrary, owners of AVs would have access to an entirely new feature in the form 
of a robotic “Chauffeur” that may change the whole prioritization/sequence of their activities (26).  

This important feature is missing in most existing CAV AMS capabilities. Some activity-based 
models implicitly integrated this feature in a scenario where the value of in-vehicle travel time was 
reduced (83). However; this approach suffers from critical limitations as (1) it does not capture the 
interactions among different agents in a household and their actual travel decisions with respect to 
AVs, and (2) this time value is often assumed and not based on observed data. 

Omitting the multitasking feature in CAV AMS tools can significantly affect the prediction accuracy 
of the new technology’s impacts on VMTs, mode-shifts, and household car ownership. As the main 
AV feature that could affect the value of in-vehicle travel time (29), the lack of methodological 
integration within AMS tool may lead to overestimating/underestimating the impact on VMTs. This 
also applies to mode shifts the time value is a critical factor for mode choice.  

This gap can be categorized at the “component-level” as it entails integration with the Demand 
Changes component of the envisioned CAV AMS system. The gap is also “methodological” one as 
existing AMS capabilities do not systematically capture this feature but rather use implicit 
approximations like changing the value of travel time. As the main feature of AVs with the most 
potential for causing activity shifts, addressing this should be one of the early steps for building the 
envisioned CAV AMS systems and therefore the gap is classified as “critical”. 

Potential Ways to Address this Gap 

Addressing this gap requires an explicit integration of this new feature within demand models or 
the demand component of AMS systems. This could be accomplished by relaxing the activity 
sequencing constraints in demand models. This could be easier in the case of agent-based 
simulation models where the activity sequence relaxations can be implemented within the 
interactions rules of the agents. Alternatively, it could be implemented as a resource (additional 
time) that may be allocated to activities. This may require significant change in how interaction rules 
are specified and programmed in simulation models. 

Data Describing the Impacts of a Robotic "Chauffeur" on Household 
Activity Prioritization and Sequencing 
As mentioned in the previous gap, the multitasking feature of AVs will enable an entirely new 
transport feature in the form of a robotic “chauffeur” (5; 26). This new form of mobility allows easier 
sharing of vehicles at households and can be used as an extra resource to help with family tasks 
around the household. For example, an AV can be used to drive one household member to their 
work and come back to pick up the other after or an AV can be used to drop off kids to their schools. 
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Household car ownership predictions can also be affected since household members can 
potentially share their vehicles more efficiently or substitute it with an SAV. Therefore, they may 
require using less number of vehicles. All of these new scenarios that are enabled by the new 
technology requires an entirely different modeling approach to capture their impacts on household 
activities.  

In addition to methodologically integrating the new multitasking (or robotic chauffeur) feature in 
demand models/components, as discussed in the previous gap, it is equally essential to collect 
data to validate the impacts of the new feature on household activity patterns or shift. The robotic 
chauffeur feature enables numerous scenarios where household members can utilize to maximize 
their productivity or convenience. However, the extent to which those scenarios will apply is 
unknown. For example, parents might be able to send their kids to school with an AV and demand 
tool should capture that. However, parents may actually not trust that technology enough to do so. 
Therefore, without actual data to validate the new features in the model, their impacts will likely be 
inaccurate. 

In the case of evaluating household car ownership, for instance, assuming that household members 
will always share an AV whenever possible without actually validating that with actual data (or at 
least stated preference data) may overestimate the reduction in car ownership. Similarly, it may 
overestimate VMTs due to the extra empty miles traveled between trips of household members. 

This gap is a “component-level” gap as it is mainly related to the Demand Changes component of 
the envisioned CAV AMS system. As explained in the aforementioned discussion, this gap is both 
methodological and data-related due to the lack of actual data to validate the impacts of the new 
multitasking (robotic chauffeur) feature, which in itself is not yet explicitly integrated into demand 
models/components as discussed in the previous gap. The gap is classified as “critical”. Integrating 
the feature in the models without actual data to validate it will allow sensitivity analyses to be 
performed, and provide ranges for the likely impacts. Given that this is potentially one of the most 
significant features in terms of impact on household interactions and role of mobility tools in these 
interactions, it is critical to address this gap to support assessment of CAV impacts at the strategic 
level, and consideration of their implications for long-term planning. 

Potential Ways to Address this Gap 

Collecting actual observations or revealed preferences regarding the multitasking feature of AVs 
will not be possible in the short-term because the highly automated vehicles do not exist yet for 
consumers. Therefore, the more immediate option would be to collect household preferences and 
potential travel behavior changes as a result of the new technology through hypothetical scenarios 
in a stated preference survey. In this survey, travelers would assume that they own an AV with a 
robotic chauffeur feature and then asked about how they would schedule their activities knowing 
that they have this new capability. As is the case with all stated preference survey, the hypothetical 
scheduling may be different from the actual one. However, this would be a first step to calibrate the 
demand models/components once the multitasking feature is integrated. 

A more expensive option, with potentially more accurate data, is to simulate an AV by having a 
driver that is always available to a household. This way, households would have the ability to 
experience the chauffeur feature and actually plan their activities with that in mind. Having a human 
driver, however, may have a different effect than a robot. For example, some parent may trust a 
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human to drop their kids at school while others may trust a robot more than a stranger. Furthermore, 
this experiment can be done for specific parts of the day only, morning/evening peak hours, for 
example, to validate the impacts on specific trips.  

Gaps in Existing Connected and Automated Vehicle 
Analysis, Modeling, and Simulation Capabilities for 
Evaluating Supply Changes 
The major supply changes expected from the deployment of CAV systems pertain to the emergence 
of new mobility options. This is mainly in the form of a Shared Automated Vehicle (SAV) fleets, and 
hybrid systems enabled by the new form (53; 56; 57)., such as for example, an integrated transit-
SAV system where the latter serves as a first/last mile connection. While shared vehicle fleets are 
not an entirely new form of mobility, transport network companies (TNC) such as Uber and Lyft 
already offer this service, SAVs have two main differentiating features: (1) the robotic driving 
behavior of vehicles is different from the human driving behavior, and will likely impact the overall 
performance of the system, and (2) the mobility service owner would have full control over the 
system, unlike services using human drivers, and can optimize the service to serve different 
objectives such as minimizing costs or maximizing quality. These two features have the potential 
to increase the SAV market share and competitive advantage against other modes. 

Three main aspects of mobility supply options would need to be addressed in an AMS system 
intended to examine CAV impacts: (1) Predicting the emergence of specific services (and their 
characteristics), along with shifts in the transit system, (2) Generating optimal plans to operate 
these fleets and services, and (3) Evaluating the impact of these services on the transportation 
system.  

The first of the above aspects is beyond the capability of any tool and is one of the main gaps in 
existing CAV AMS capabilities. The second aspect is what most studies have focused on (59) by 
building special-purpose simulation tools (54; 56; 60; 61) to answer questions related to managing 
SAV fleets such as the number of vehicles required, travel time, costs, etc. The third aspect is 
achieved by integrating the first two aspects with the demand component in an AMS system to 
evaluate the impacts at a network level. 

The gaps with respect to modeling the supply changes in a CAV AMS systems is (1) the inability of 
current AMS systems to predict the emergence of new mobility systems enabled by the new 
technology and their characteristics, and (2) incorporating wireless telecommunication in the 
infrastructure representation as it is an essential element of CAV systems. The remaining of this 
section will discuss the gaps in further details. 

Predicting the Emergence of New Mobility Options Enabled by 
Connected and Automated Vehicle Systems and their Characteristics 
The rapid development in wireless telecommunication technologies and the high adoption rate of 
those technologies have enabled radically new forms of mobility and opportunities for multi-mode 
integrations that were not possible or thought of less than 20 years ago. Most AMS tools, for 
example, failed to predict current ride-hailing services, such as Uber and Lyft, which were only 
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enabled by advancements in positioning, telecommunication, and handheld computing 
technologies. 

The current development in the areas of artificial intelligence, robotics, CAV systems, and the 
internet of things will probably cause even more radical changes to the forms of mobility that 
travelers are used to. Aside from more futuristic modes such as flying cars or the Hyperloop, the 
most anticipated mode enabled by the aforementioned technologies is SAV fleets.  

Current CAV AMS tools are unable to predict some critical characteristics of SAV fleets such as 
costs, travel time, comfort, or charge range (for electrical vehicles). Instead, these tools focus on 
modeling the operations of SAV fleets under multiple assumptions about those characteristics, 
network configuration, and wireless telecommunications. Furthermore, current AMS tools are 
unable to predict emerging multi-mode integrations such as a transit and SAV where the latter 
provides a last/first-mile solution. 

The inability to predict the afore-mentioned changes with respect to the supply options may 
significantly affect the ability of CAV AMS systems to predict their strategic or operational impacts. 
Some of the unanswered questions would, for example, whether the new service will be optimized 
towards the comfort of the traveler or to maximize the profits of the operator, or whether the service 
will only be located in dense areas vs. serving those in less populated area. Furthermore, the 
inability to predict potential multi-mode integration can lead to missed opportunities for optimizing 
the transportation system as a whole. 

This gap can be considered a “component-level” gap as it is mainly related to the Supply Changes 
component of the envisioned CAV AMS system. The gap is also “methodological” as it does not a 
feature of any CAV AMS capabilities. While predicting new modes and their characteristic is 
important for a comprehensive evaluation of their impacts, building such a capability can be a very 
complicated process. The prediction would rely on multiple factors such as market trends, 
technology development, and political will. Therefore, this gap is prioritized as “desirable.” 

Potential Ways to Address this Gap 

As developing a full capability to predict emerging mobility option can be a very complicated 
process, one way to partially address this gap is to develop multiple operational scenarios of the 
new modes. Those scenarios will be based on current and predicted market trends, technology 
development, regulations, and ultimately expert judgment. Therefore, it is critical for the envisioned 
CAV AMS to be able to define and test different scenarios that will determine the availability of new 
modes and the type of telecommunication technology in place, whether it is V2I, V2V, or V2X 
communications. This should lower the uncertainty in the impacts of those modes. 

Data Describing the Unique Characteristics of Connected and 
Automated Vehicle Systems Integrated into Fleet Management 
Modeling of Shared Automated Vehicles 
One of the major limitations of current simulation tools modeling the operations of Shared 
Automated Vehicle (SAV) fleets is the lack of actual data describing the characteristics of 
anticipated AVs. While some prototypes are being tested in the field by private TNCs, those the 
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data used from those experiments are usually inaccessible to the public. An example of those 
characteristics is the actual travel time by SAVs on the network, which highly depends on the 
performance of those SAVs in traffic. Furthermore, current AMS tools mostly rely on simple rules 
that a central dispatcher uses to assign SAVs to travelers (56; 60). In practice, fleet operators are 
likely to use an optimization approach to minimize their operating costs. Therefore, the simulated 
movement of SAVs on the network in current agent-based tools may be different from actual 
operations.  

Using actual data to validate the rules/formulations used in tools is essential for generating optimal 
fleet management plans, and consequently, better evaluations of their impact on the network. For 
example, using simple rules to assign SAVs to travelers, such as on a first-come-first-serve basis, 
would require vehicles to travel extra miles to serve the requested trips and therefore increase 
VMTs. It may also affect the number of vehicles required to serve those trips and the estimated 
costs. Those impact will likely be overestimated if operators opt to optimize their operations with 
advanced assignment algorithms such as those being developed in some of the more recent work 
by Hyland and Mahmassani (113). Another characteristic that is missing from existing tools 
modeling electric SAVs is the network of charging stations and the charge range of those vehicles. 
Current tools (54) rely on a hypothetical network of charging stations and assumed ranges. Both of 
those critical aspects may be different once the technology is deployed. 

This gap is considered a “component-level” gap as it is mainly related to Supply Changes 
component in the envisioned CAV AMS system. The gap is also “data-related” as per the above 
discussion. Finally, this gap is prioritized as "important" since the missing data on the above-
mentioned characteristics highly affects the operations of SAVs and their impacts on the network. 
However, the network impacts are likely to be long-term when/ if SAVs become a dominant travel 
mode. 

Potential Ways to Address this Gap 

Reaching out to TNCs, such as Uber and Lyft, might be the most effective way to gather information 
on the expected characteristics of the SAVs. Those companies are likely to be the first adopters of 
the SAV technology as they have invested in it and integrated it as part of their future business 
models. While TNC may not disclose some information that is critical to their competitive edge in 
the market, they can provide some important insights about the type of technology they are looking 
for in the future and some general operation strategy. 

Incorporating Wireless Telecommunication in Infrastructure 
(V2V/V2I/V2X) 
Another feature of CAV systems that is missing in almost all existing CAV AMS capabilities is 
incorporating wireless telecommunication as in the representation of infrastructure and networks. 
Reliable wireless telecommunication is not only essential for the operation of CAV technologies but 
can also affect the driving behavior of CVs. Most AMS tools, especially SAV fleet modeling one, 
just assume that all vehicles are connected and the central dispatcher has full information regarding 
the location of all vehicles, requests, origins, and destinations. This may not be the actual case in 
practice. 
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If DSRC technology is used for V2I telecommunications, it will likely be deployed in strategic 
locations due to its high costs which will impact the operations of SAV fleets that rely on a central 
dispatcher to assign vehicles. Furthermore, wireless telecommunications, even the most advanced 
technologies to date, may not reliable at all times. It may suffer from outages, disconnections, or 
poor signals, especially at severe weather conditions. Similar reliability issues involve the 
positioning of vehicles such as lost GPS signals inside tunnels.  

Having an abstract representation of wireless telecommunications in CAV AMS systems is 
important for a realistic representation new mobility options and evaluating the telecommunication 
impacts on driving behavior. In other words, this gap is related to both the Supply Changes and 
Operational Performance components in the envisioned CAV AMS system and therefore is 
considered a “platform—level” gap and is prioritized as “important”. It is also classified as a 
“methodological” gap since wireless technology is a unique feature of CAV systems that is not 
represented in almost all exiting CAV AMS capabilities. 

Potential Ways to Address this Gap 

This gap can be addressed by integrating a set-up of wireless telecommunication technologies 
(V2I/V2V/V2X) within the network representation. This is particularly important in the case of DSRC 
communications. They can be designated nodes or links within the network where those 
technologies are strategically installed. The designated nodes/links should also include 
communication ranges which would affect the information flow between connected agents 
(travelers, vehicles, infrastructure). Those strategic locations within the network would also affect 
the driving behavior of vehicle within those ranges. The exact method to be used for representing 
wireless telecommunications in network configurations is an interesting topic for future research. 

Gaps in Existing Connected and Automated Vehicle 
Analysis, Modeling, and Simulation Capabilities for 
Evaluating Operational Performance 
CAV systems are expected to improve different performance aspects (62) of transportation systems 
including safety (9; 63), mobility (1; 7), and sustainability (64). The technology promise to reduce 
accidents that are caused by humans, improve road capacities by driving safely at higher densities 
(65), and improve traffic control whether on freeways or intersections (19; 67-74). 

To evaluate the above-mentioned impacts, the unique behavior (23) of CAV systems needs to be 
captured at the individual vehicle level in AMS tools. Therefore, most researchers relied on 
microsimulation tools which offer the highest fidelity to comprehensively capture the characteristics 
of CAV systems including but not limited to car-following behavior, lane-changing, sensor 
performance and reliability, reaction time and wireless telecommunications (89).  

To evaluate the strategic-level performance of large regional networks; however, using 
microsimulation tools is computationally intensive and may not be necessary. While macroscopic 
models/tools are typically used in this case observations of actual CAV systems to build these tools 
are not available as the technology is still in the early testing phase. Therefore, some researchers 
used microscopic tools to generate fundamental relationships and performance characteristics that 
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can be used in conjunction with mesoscopic simulation-based tools at varying levels of spatial and 
temporal detail (66; 120).  

The above-mentioned tools were used to evaluate different models for CAV driving behaviors such 
as ACC (17; 37; 41) and CACC (38; 42; 49; 66) at the facility and network levels. Some specialized 
tools were used to evaluate the impacts of those driving behaviors at different market penetration 
levels (94; 123). CAV-related policies and advanced traffic control algorithms were also evaluated 
such as dedicated AV lanes (105) and speed harmonization (75-78). 

The main limitations of the existing CAV AMS tools for evaluating operational performance is 1) 
simplified representations of key CAV elements in performance models such as vehicle sensor 
performance and wireless telecommunications 2) representations available for only limited 
numbers of CAV system designs, without the broader collection of data needed to represent the 
full diversity of CAV system performance and 3) missing actual data to validate the different driving 
behavior interactions with other agents (pedestrians, bicyclists) in urban environments. Those gaps 
are discussed in further detail in the remaining of this section. 

Representing the Effect of Wireless Telecommunication Networks 
and Information Flow on Connected and Automated Vehicle System 
Performance  
Wireless telecommunications and information flow are two elements that are unique to CAV 
systems and affect their performance. CVs, for example, rely on those technologies to receive 
information about prevailing traffic conditions which could help increase reaction time of drivers or 
ease congestion through dynamic rerouting (26). SAVs also rely on wireless telecommunication 
technology to receive information about trip requests and optimal relocations.  

As an integral part of the operation and performance of CAV systems, an abstract and simple 
representation of wireless telecommunications needs to be integrated within performance models 
to capture its impacts on the behavior of the new systems. One of the impacts at the individual 
vehicle level, for instance, is reduced reaction times of connected drivers. Those drivers would be 
more aware of the prevailing traffic conditions by receiving this information through V2I/V2V 
technology. On a system level, the communication range of CAVs affects the stability of the whole 
traffic stream which increases at higher communication ranges (124). 

Failing to integrate the telecommunication aspect in performance models can affect the evaluation 
accuracy of CAV impacts. In the case of evaluating connected traffic stability, for example, failing 
to capture the information flow between vehicles or the infrastructure can lead to overestimating 
traffic stability. This is because it would not account for the system’s capability to deliver all the 
messages broadcasted by the vehicles or traffic management centers (TMC) and the delays to 
send/receive those messages. It also would not account for other information flow limitations such 
as data processing, storage, and analysis.  

This gap is considered a “component-level” gap as it mainly relates to the Operational Performance 
component of the envisioned CAV AMS system. It is also a “methodological” gap since it is a key 
element of CAV systems that is missing from almost all exiting CAV AMS tools. The gap is prioritized 
as “important” as it directly impacts the driving behavior and operations of CAV systems but is less 
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critical than other gaps such as the lack of actual data to calibrate the behavior of emerging 
systems. 

Potential Ways to Address this Gap 

One potential way to address this gap is to integrate a communication network simulator within the 
operational performance component of CAV AMS system. In fact, this part of the vision for a 
comprehensive CAV AMS system, as discussed in task 3 (5; 6)  This way, different information 
routing protocols, including topology-based (ad-hoc) protocols (86-89) and position-based (cluster) 
protocols (48; 90-92), can be tested within the CAV AMS system and their impacts on the 
performance of CAV systems can be evaluated. 

The Node Mobility Model (ns-3) is an example of a communication network simulator that provides 
several native mobility models. It has also been integrated within the CAV simulation platform 
developed by Talebpour et al. (96). However, this simulator only incorporates MANET specific 
routing protocols which have limited capability in representing the dynamic information routing 
between vehicles and therefore may result in poor routing performance and low throughput (89). 

Representing Sensor Performance and Reliability Aspects that 
Influence Vehicle Performance 
As in the case of wireless telecommunication, the sensor performance and reliability aspect is a 
key element of CAV systems that directly affect their performance (26). This is more critical in the 
case of AVs as they rely almost exclusively on those sensors for environment perception and 
maneuvering (longitudinal and lateral). For example, an AV needs to estimate the distance to front 
vehicles and their speed so that the AV can accelerate/decelerate safely. An AV also needs to detect 
surrounding vehicles to be able to change lanes safely and efficiently.  

Despite the integral role sensor reliability plays in CAV performance, a representation of it is missing 
in almost all existing CAV AMS capabilities. Those tools typically assume perfect operating 
conditions where sensors are fully reliable. This an unrealistic assumption since sensor 
performance degrades under certain conditions such as in the case of severe weather conditions 
(low visibility, reflective road) or in the case of a sensor damage or malfunction. 

The sub-optimal sensor operating scenarios can negatively impact the driving behavior of CAV 
systems and therefore needs to be captured in CAV AMS systems. For example, the lower 
detection range of AVs under severe weather conditions can affect the speed at which those 
vehicles operate and safe gap they require to change lanes. Furthermore, missing sensor 
representation in those performance models would reduce the capability CAV AMS systems to 
answer important questions related to the operations of CAV systems in case of system failure and 
their impacts on traffic flow. For example, how would the driving behavior of an L2 AV vehicle 
transition to manual driving in the case of sensor failure and how would that impact the traffic flow. 
Would that extra reaction time create a shockwave? This is also important for answering cyber-
security related questions. For example, how would the vehicle operate if the information it receives 
is tampered with and how would that affect the performance of the whole system? 
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This gap is a “component-level” gap as it is mainly related to the Operational Performance 
component of the envisioned CAV AMS system. It is also categorized as “methodological” since it 
is related to a unique characteristic of CAV systems that is missing in almost all CAV AMS 
capabilities. The gap is prioritized as “critical” due to its high impacts on driving behavior and the 
overall system performance. 

Potential Ways to Address this Gap 

To address this gap, sensor performance needs to be integrated within the performance models in 
CAV AMS systems. In car-following and lane changing models, for example, the 
acceleration/deceleration behavior and lane changing gap acceptance capabilities can depend on 
some sensor characteristics such as detection range and field of regard. Maximum or desired 
speeds and minimum following distances can also depend on the detection range and its reliability. 

Sensor reliability can be introduced by adding a stochastic parameter to some of the sensor 
characteristics such as positions, speed detection, and range. The reliability can then be tuned by 
increasing/decreasing stochasticity in those terms; higher stochasticity means less reliable in this 
case. Another way to evaluate the impacts of reliability is to simulate instances of sensor failure for 
different automated vehicle features and assess their impacts on traffic flow.  

Data toRepresenting the Differences in Driving Behaviors between 
Conventional Manual and Connected Vehicle Drivers 
Connectivity extends drivers’ perception of their surrounding environment beyond the visual 
scanning of isolated drivers, potentially leading to a more responsive driving behavior (23). The 
additional information that connected drivers have access to can affect their behavior in different 
ways depending on the kind of information they receive. V2V communications, for instance, 
provides drivers with information on vehicle movement and location, such as speed and 
acceleration of downstream vehicles, which increases drivers' awareness of downstream traffic 
conditions and improves their responsiveness. V2I communications, on the other hand, provides 
drivers with information on road conditions, weather, TMC decisions (e.g. express lanes) which 
influence the drivers' strategic decisions such as route choice and departure time. 

The main limitation, however, when it comes to modeling the distinct behavior of connected 
systems is the unavailability of actual data to validate the extent to which connectivity affects 
drivers’ behavior and their decisions. This limitation impedes the ability of CV models to produce 
reliable impact evaluations of the new driving behavior on the transportation system's performance. 
This is because the assumptions that may be used in CV models to capture the distinct driving 
behavior may be different from actual behavior. 

An example of the negative impact of this gap on CAV AMS capabilities is the unreliable estimates 
of connected traffic flow performance capacity, stability, and safety. For example, overestimating 
the responsiveness of connected drivers may lead to overestimating the stability of the traffic flow 
as it directly relates to the reaction time of drivers (25). It can also overestimate the safety impacts 
of connected streams since it also depends on their reaction time to unexpected conditions (sudden 
stops, traffic congestion, etc.) 
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This gap is categorized as a "component-level" as it mainly relates to Operational Performance 
component of the envisioned CAV AMS system. It is also a "data-related" gap as previously 
discussed. Finally, the gap is prioritized as "critical" since it directly affects the capability of CAV 
AMS systems to produce validated performance impacts. 

Potential Ways to Address this Gap 

The best way to address this gap is by collecting actual data from field experiments on the drivers’ 
responses/behavior in a connected environment. This is actually the main motivation of some of 
the USDOT funded projects such as the Connected Vehicle Pilot Program (CVPP) (125) and the 
Safety Pilot Model Deployment (SPMD) (126). Unfortunately, those projects only address a limited 
subset of the potential connected vehicle applications, so they can only shed light on driver 
responses to those specific applications. 

The ongoing CVPP project is expected to generate an extensive data set on the behavior of 
connected vehicles for different V2V and V2I applications such as crash warning, intersection 
movement assist, speed compliance, and signalized intersections. The SPMD project, on the other 
hand, collected data over 2,800 vehicles equipped with V2V collision warning devices and driving 
in a naturalistic manner for over a year. This includes BSM messages, naturalistic, message and 
safety application data, and roadside equipment data. The collected data is discussed in further 
detail in the data source assessment document (3) 

An alternative option to collect data on the behavior of connected vehicles can be done through 
driving simulators. However, the observed driving behavior in the simulator might be different from 
actual behavior in the field, which limits the usability of the data set.  

Data to Support the Developing Vehicle-following and Lane-changing 
Models for Diverse Isolated-automated Vehicle Systems 
A large variety of automation systems, both isolated and cooperative, are under development and 
will have to be represented by the envisioned CAV AMS system. The driving behavior of those 
systems highly depends on their level of automation and degree of coordination (cooperation). The 
level of automation defines which roles are performed by the automation system and which roles 
are performed by humans. The degree of coordination defines whether the AV system is operating 
in isolation or if it relies on V2V/V2I/V2X technology to coordinate with other vehicles or receive 
information about traffic conditions or other agents (pedestrians, bicyclists, etc.) 

The driving behavior of AV systems is fundamentally different from human-driven vehicles. It heavily 
depends on the equipped sensors and the control algorithms installed by car manufacturers in 
addition to the additional information that can be received through connectivity (26; 123; 127). While 
many studies modeled the behavior of different AV systems such as ACC (17; 37; 41) and CACC 
(38; 42; 49; 66), their main limitation is the lack of actual data to validate the distinct vehicle-
following and lane-changing behavior of AV systems. 

Using actual data to calibrate driving models is important to estimate meaningful and representative 
behavior in CAV AMS systems. It is even more important in the case of AV systems as their driving 
behavior is entirely new or rather still under development. The risk of using uncalibrated parameters 
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in AV vehicle-following and lane-changing models can be high in terms of misrepresenting the 
actual driving behavior of AV systems and their impacts on the performance of transportation 
systems. For example, increased road capacity is one of the expected impacts of the AV systems 
due to driving at higher traffic densities. Using uncalibrated data in this case, however, may 
overestimate/underestimate the actual impact on capacity. The same risk applies to estimating the 
traffic stability impacts which depends on the responsiveness of vehicles. Using uncalibrated 
models may overestimate the responsiveness of AV systems and therefore overestimate the 
capacity of the traffic stream. This also applies to the road safety impacts of AV systems. 

In addition to misevaluating flow performance impacts, using uncalibrated AV models can 
misrepresent the heterogeneous traffic interactions in mixed traffic streams (isolated-manual, 
connected-manual, isolated-automated, connected-automated). For example, the safety distance 
required for AV systems to change lanes may be different from the actual distance required by 
those systems and therefore the number of lane changes and their impact on traffic stability may 
not be representative. This is particularly important for complex weaving sections with limited 
access/egress points such as dedicated AV lanes. More data is required to validate the merging 
behavior of vehicles in those sections. For example, how would AVs join the dedicated lane which 
has shorter than normal gaps between vehicles as they drive at high densities?  

Developing validated AV driving models is not only important for the Operational Performance 
component of the envisioned CAV AMS system, but also important for the Supply and Demand 
components. As previously discussed in this Chapter, the performance of those systems directly 
impacts the activity patterns at the network level as well as the operation of emerging mobility 
options such as SAVs.  

This gap is considered a “component-level” gap as it is mainly related to the operational 
performance component of the envisioned CAV AMS system. It is also a “data-related” gap since it 
involves the lack of data to validate AV models rather than the methodology to develop them. 
Finally, the gap is prioritized as “critical” as it directly affects the representativeness of AV driving 
behavior and their strategic and operational impacts. 

Potential Ways to Address this Gap 

Addressing this gap requires collecting more data on the driving behavior of AV systems in actual 
traffic conditions. For partially automated systems, data needs to be collected on the behavior of 
diverse assisted-driving systems such as ACC or CACC, to determine how widely their 
performance differs from each other and to be able to model the interactions between the diverse 
systems. Data is needed on the drivers’ responses when their vehicle transitions from automated 
driving to manual driving. This is actually the motivation of one USDOT’s projects that investigated 
how operators interact with partial automation under Levels 2 and 3. The “Human Factors 
Evaluation of Level 2 and Level 3 Automated Driving Concepts” project (128) collected operator 
behavior data such as the time to react, the time to regain control, time to activate automation, the 
operator's performance. More details on the data collected can be found in the referenced report, 
which covers early generation driving assistance systems, whose driver interfaces may not be as 
effective as later generation systems. An alternative option to collect data on the human’s 
responses during partial automation transition can be done through driving simulators. However, 
the data collected through those simulators are not as reliable as actual field experiments. 
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Collecting data for highly/fully automated vehicles is more challenging than partially automated 
vehicles which are already available in the market. Some prototypes can be used to collect initial 
data, however, most of these are usually used in controlled environments that are different from 
actual traffic conditions and they are tested by highly-trained test drivers rather than “typical” 
drivers. Some major companies have been testing AV systems in the field but those are very 
protective of their own data, and they are also not driven by “typical” drivers. 

Data to Support Modeling the Interactions of Connected and 
Automated Vehicles with Vulnerable Road Users in Urban 
Environments 
The interactions of CAV systems with vulnerable road users (VRUs), mainly pedestrians and 
bicyclists, in urban environments are different from road vehicle-to-vehicle interactions in multiple 
ways. For instance, detecting and identifying pedestrians and bicyclists at intersections is a more 
demanding process than identifying vehicles as it involves a much more complicated environment; 
signs, animals, buildings, traffic lights, etc. In addition, the actions of pedestrians and bicyclists are 
less predictable than those of vehicles which can make the control process of CAVs more 
complicated. Furthermore, the pedestrians’ safety perception of AVs specifically can be different 
from human-driven vehicles. For example, an AV could be perceived as a safer and more 
responsive vehicle, which may encourage a riskier behavior of pedestrians crossing streets in front 
of an AV knowing that the vehicle will likely stop safely. On the other hand, pedestrians and 
bicyclists normally use eye contact with the vehicle driver to determine how to interact with 
conventional drivers, but this option will not be available with highly automated vehicles, introducing 
a large uncertainty into the kind of interactions that are likely to occur. 

The integration of the aforementioned interactions within CAV AMS systems is important for an 
accurate estimation of their performance impacts in urban settings. Intersections can be the 
bottlenecks for the overall system performance improvements expected by CAV systems. Despite 
their importance, those unique interactions with vulnerable road users are missing from existing 
CAV AMS capabilities. This is mainly due to the lack of data to represent movements of pedestrians 
and bicyclists in urban environments and of the ways in which they will interact with CAVs at a level 
of fidelity sufficient to support modeling their interactions with CAVs. 

Failing to address this gap will affect the capability of CAV AMS systems to answer critical questions 
that are related to the operation of CAVs in urban environments and their impacts. For example, 
the AMS capability will not be able to estimate the impact of the pedestrians' safety perceptions of 
CAVs on intersection capacity. The riskier behavior of pedestrians with respect to CAVs may cause 
disruptions to the traffic flow and lower its performance. The safety implications of CAV operation 
at intersections is another aspect that CAV AMS systems will not be able to assess without 
integrating the above-mentioned interactions. For example, will CAVs cause fewer accidents at 
intersections? 

This gap is considered a “component-level” gap as it mainly relates to the Operational Performance 
component of the envisioned CAV AMS system. It is also “data-related” as discussed above. The 
gap is prioritized as “critical” since it directly affects the performance impacts evaluated by the CAV 
AMS system and would help answer critical questions regarding the operations of CAV systems in 
urban settings—a potentially significant impediment to widespread deployment of the technologies. 
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Potential Ways to Address this Gap 

One way to address this is to conduct real-life experiments where pedestrians/bicyclists behavior 
is observed at intersections while interacting with CAV systems. As testing the safety of those 
vehicles is still undergoing, the opportunities for conducting such experiments may be limited. To 
ensure the safety of operating AVs within the vicinity of pedestrians and bicyclists, they can be 
equipped with safety systems that can override their automatic controls in case of an emergency, 
such as having a driver inside the vehicle or stopping it remotely. 

The Researchlab Automated Driving Delft (RADD) on the TU Delft Campus (129) is an example of 
a physical space where real-life experiments can be conducted on interactions between humans 
and CAV systems. One of those experiments involves driving very low speed automated shuttle 
buses, or WEpods as they are called by the lab, for an extended period of time on public roads with 
other traffic. The data collected in this experiment involved user's perceptions through face-to-face 
interviews, focus groups, and an online survey. More details about the experiment can be found in 
the referenced report (129). 

Gaps in Existing Connected and Automated Vehicle 
Analysis, Modeling, and Simulation Capabilities for 
Evaluating Integrated Network Performance 
Because of the far-reaching impacts on CAVs at so many levels, as illustrated in the methodological 
framework discussed in Chapter 2, AMS tools by necessity entail the interaction of several different 
aspects and processes. To capture these interactions, model platforms are required, integrating 
various components relevant to the questions being asked. Platforms in this context are primarily 
conceptual analytical constructs that are embedded in a software tool. They typically entail a 
collection of models representing interacting agents or processes. In this case, the CAV AMS 
system would be a platform that integrates a collection of supply, demand, and performance models 
to represent the behavior of CAV systems and their impacts on transportation systems. Platforms 
also typically offer a foundation upon which additional capabilities may be built, albeit with varying 
degrees of difficulty and effort. 

Existing platforms can be categorized into two main types: 1) Modeling tools for planning, intended 
for application at the urban and regional level; and (2) Simulation models for operations, primarily 
applied to facilities or urban/suburban subnetworks. Activity-Based Models (ABM) and Dynamic 
Traffic Assignment (DTA) procedures are both examples of advanced models on the demand and 
supply sides of transportation planning, respectively. While conceptually and theoretically inter-
related, in practice these models have developed along essentially independent tracks (3).  

The weak integration of the demand and supply models with CAV capability is the main limitation 
of existing AMS tools when it comes to evaluating the network impacts of the new system. Most of 
the existing CAV AMS capabilities are built as single tools to answer specific research questions 
such as the impacts to road capacity, mode shifts, or the operation of shared vehicles. Therefore, 
using those tools to evaluate the network-wide impacts of the new systems is unreliable. The 
remaining of the section will discuss more specific gaps regarding the above-motioned integration. 
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Integrating the Behavior of Different Agents in a Network Context  
Evaluating the network-wide impacts of CAV systems requires capturing the interactions of different 
agents in a network context. Those agents include CAVs, travelers, mobility service providers, 
transit and network managers, freight shippers and carriers. However, as previously discussed, 
current AMS capabilities are built to answer questions about a specific agent on the network, and 
in many cases, for specific facility type. For example, some tools are built specifically to model 
CAVs on freeways, SAVs operations on a hypothetical network, or pedestrian movements at 
intersections. 

Using these tools separately may misrepresent the actual impacts of CAV systems on a network 
level. An example of that is evaluating the expected traffic performance impacts of CAV systems. It 
has been shown in previous studies that CAVs would have significant improvements in throughput 
on freeways by moving at high speeds and densities. However, those improvements are not 
expected for intersection performance which means that those could become bottlenecks that 
would reduce the overall performance impacts of CAVs. Therefore, for a representative evaluation 
of the network performance, the modeling of CAVs as well as other agents at intersections need to 
be integrated. Another example this gap’s impact is to produce inaccurate mode shifts that are 
caused by CAV systems. This can occur when the performance of the different modes is evaluated 
separately which may differ from real-life situations where those modes operate on the same 
network and affect each other’s performances. 

This gap is at the “platform level” as it relates to all the components of the envisioned CAV AMS 
framework. The gap is “implementation-related” as it involves the integration of different 
components within the CAV AMS system rather than the development of a specific component. The 
gap is prioritized as “critical” since integrating the behavior of different agents is essential to capture 
actual impacts of CAV systems.  

Potential Ways to Address this Gap 

To address this gap, different agents need to be modeled simultaneously within the CAV AMS 
system. Those would include CAVs, travelers, mobility service providers, transit and network 
managers, freight shippers and carriers. Modeling capabilities for each type of agents already exist. 
The challenge would be to integrate those within the same network context.  

Integrating Demand, Supply, and Operational Performance 
Components  
As noted earlier in the discussion, the implications of CAV technology are far reaching on multiple, 
yet interdependent levels (26). On the supply side, the technology is expected to support entirely 
new modes of mobility such as SAVs or hybrid transit systems. On the demand level, the availability 
of new mobility forms in addition to the improvements to current transportation systems through 
connectivity can affect the activity patterns and mobility choices of travelers. Finally, changes to 
both supply and demand in addition to the improvements brought by connectivity and automation 
to traffic flow ultimately affect the operational performance of transportation systems. 
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The main limitation of the existing CAV AMS capabilities is that they do not capture the 
interdependencies of CAV impacts on supply, demand, and operation levels. As mentioned earlier 
in the section, existing AMS tools are usually built to evaluate CAV impacts at a specific level only. 
For example, some microsimulation tools are developed to evaluate the traffic performance impacts 
of CAV at different market penetration levels without taking into consideration the dynamic changes 
in demand. Other demand models were only built to evaluate the potential mode shifts caused by 
CAV systems without considering the dynamic changes in performance at different demand levels.  

Failing to capture the interrelations between the aforementioned components can affect the 
assessment reliability of the expected impacts produced by the CAV AMS system. On the demand 
level, for example, the shift in activity patterns of individuals/households is directly related to the 
performance characteristics of CAV systems. Therefore, evaluating the potential shifts in trip 
sequence, departure, and arrival time without taking into consideration the dynamic performance 
of those systems may overestimate/underestimate those potential shifts. Similarly, on the supply 
level, estimating traffic assignment without considering the potential activity shifts caused by CAV 
systems may produce inaccurate assignments and network performance impacts. 

This gap is considered a “platform-level” gap, as it related to all components in the envisioned CAV 
AMS system. It is also an “implementation-related” gap as it involves the integration of three 
separate components of the CAV AMS system. Finally, the gap is prioritized as “critical” since 
addressing this gap is essential for a representative estimation of the network impacts of CAV 
systems.  

Potential Ways to Address this Gap 

To address this gap, the inputs/outputs of the demand, supply, and operation components need to 
be exchangeable within an integrated CAV AMS system. The following steps are an example of 
that integration:  

• Integrating infrastructure representation and data generated from supply models with demand 
and performance models 

• Integrating traffic flow patterns generated from the demand models in performance models to 
evaluate their network performance impacts 

• Integrating operational performance of CAV systems in demand models to evaluate their 
impacts on activity patterns  

An example of an integrated AMS system is the ABM-DTA multimodal platform developed for the 
Chicago Metropolitan Agency for Planning represents one of the more advanced state-of-the-art 
platforms developed for practical applications. It combines the CT-Ramp ABM, with an enhanced 
version of DYNASMART-P in combination with a fine-grained multimodal transit assignment 
procedure, NU-TRANS. While it is not directly CAV-capable, it represents one of the more advanced 
successful integrated platforms for strategic planning applications (119) 

 

 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  103 

Chapter 8. Addressing Identified 
Gaps Through the Methodological 
Connected and Automated Vehicle 
Analysis, Modeling, and Simulation 
Framework 

The comprehensive framework introduced in in this report addresses the identified gaps, 
summarized in Table 18, in different ways. For methodological gaps, the missing CAV related 
features such as sensor reliability and the multitasking effect on trip-making behavior were 
integrated into the different components of the framework. Data-related gaps mainly require 
conducting field studies, test track experiments, or driving simulations to collect data on the 
behavior of CAV systems. Therefore, the framework of the CAV AMS system allows the different 
models integrated into it to be updated whenever more data is available. Finally, implementation 
gaps were addressed by integrating the demand, supply, and operational performance models into 
a comprehensive framework of a CAV AMS platform. The remaining of this chapter briefly discusses 
those gaps and how they were addressed in the general framework. 
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Table 18. Summary of gaps identified in task 7. 

Framework 
Component ID Gap Description Level Type Priority 

Demand 
Changes 

DC-G1 Data describing the unique characteristics of CAV systems as a 
new option in demand models/components Component Data-related Critical 

DC-G2 Integrating the multitasking feature of automated vehicles in 
demand models/components Component Methodological Critical 

DC-G3 Data describing the impacts of a robotic "Chauffeur" on 
household activity prioritization and sequencing Component Data-related Critical 

Supply 
Changes 

SC-G1 
Predicting the emergence of new mobility options enabled by 
CAV systems and their characteristics such as SAV or hybrid 
systems 

Component Methodological Desired 

SC-G2 Data describing the unique characteristics of CAV systems 
integrated into fleet management modeling of SAVs Component Data-related Important 

SC-G3 Incorporating wireless telecommunication in infrastructure 
representation (V2V/V2I/V2X) Platform Methodological Important 

Operational 
Performance 

OP-G1 
Practical and simplified representation of the effect of wireless 
telecommunication networks and information flow on 
performance of CAV systems   

Component Methodological Important 

OP-G2 Practical and simplified representation of sensor performance 
and reliability aspects that directly influence vehicle performance Component Methodological Critical 

OP-G3 Data to represent the differences in driving behaviors between 
conventional manual drivers and connected drivers Component Data-related Critical 

OP-G4 Data to support the development of vehicle-following and lane 
changing models for diverse AV systems Component Data-related Critical 

OP-G5 Data to support modeling the interactions of CAVs with 
vulnerable road users (VRUs) in urban environments Component Data-related Critical 

Network 
Integration 

NI-G1 Integrating the behavior of different agents in a network context Platform Implementation Critical 

NI-G2 Integrating the demand, supply, and operational performance 
components in a comprehensive CAV AMS system Platform Implementation Critical 

Source: FHWA 2018 
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Gaps in Existing Connected and Automated Vehicle Analysis, 
Modeling, and Simulation Capabilities for Evaluating Demand 
Changes 
Researchers have mainly used two types of complementary tools (115) for evaluating the demand impacts 
discussed in Chapter 0: travel demand models (83; 85) and agent-based simulation approaches (53; 54; 
56; 81). Demand models (including mode choice and activity-based models) use current travel behavior, 
demographics, employment, and modes to project future demand patterns. Since actual travel data using 
CAVs is not yet available, CAV studies using these models rely on a number of assumptions regarding the 
characteristics of CAVs, and the relative magnitudes of travelers’ preferential weights associated with these 
characteristics. Agent-based simulation approaches have been elaborated to answer specific research 
questions regarding CAV impacts through interactions amongst various agents. While the interaction rules 
in those tools are usually based on actual behavior, the rules related to CAVs are usually assumed, or they 
may be based on limited field tests. 

The above-mentioned tools help answer some of the main questions related to the demand changes that 
are expected with the deployment of the new technology. Those include questions related to the adoption 
of the new technology (27; 28; 35; 81; 130), travel mode shifts  (34; 36; 83), vehicle ownership (52-55), and 
VMT impacts (27; 31-33; 54; 55; 64; 83; 85). Those tools, however, suffer from major limitations with respect 
to 1) the lack of data on the unique characteristics of CAVs and 2) the explicit integration and validation of 
the multitasking potential of AVs in those capabilities. Those limitations are discussed further below. 

Describing Unique Characteristics of Connected and Automated Vehicle 
Systems as a New Option in Demand Models 
The lack of data on the unique characteristics of CAV systems as a new mode is one of the main limitations 
of existing demand models. While those characteristics are typically integrated into existing CAV AMS 
capabilities, as well as the framework of the CAV AMS system introduced in this report, the extent to which 
those characteristics affect the different tuning parameters in the tools is usually assumed and not based 
on actual data. This will adversely affect the accuracy of the impact evaluation results. 

While acquiring data requires performing field studies using CAV prototypes or commercial systems with 
adaptive cruise control, for example, the CAV AMS system should be designed and built with the capability 
to update/calibrate the different demand models in it with new data as they become available. This is an 
essential requirement of the envisioned CAV AMS system. 

Integrating the Multitasking Feature of Automated Vehicles in Demand 
Models 
Integrating the multitasking feature of AV in demand models is the second major limitation of existing AMS 
capabilities. Multitasking is maybe the most important characteristic of highly automated vehicles, with 
potentially the highest impact on the activity pattern shifts. Travelers would no longer be constrained by the 
unproductive time spent in their personal vehicles. On the contrary, users of AVs would have access to an 
entirely new feature in the form of an automated “Chauffeur” that may change the whole 
prioritization/sequence of their activities (26). Addressing this gap requires explicit integration of the 
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multitasking feature into demand component of the CAV AMS systems. This feature would affect the activity 
patterns of the demand component as well as travel choices, see Figure 5. 

Describing the Impacts of a Robotic "Chauffeur" on Household Activity 
Prioritization and Sequencing 
As mentioned in the previous gap, the multitasking potential of highly automated vehicles will enable an 
entirely new transport feature in the form of an automated “chauffeur” (5; 26). This new form of mobility 
allows easier sharing of vehicles at households and can be used as an extra resource to help with family 
tasks around the household. For example, an AV can be used to drive one household member to their work 
and come back to pick up another after or an AV can be used to drop off kids at their schools. All of these 
new scenarios that are enabled by the new technology requires an entirely different modeling approach to 
capture their impacts on household activities. 

In addition to methodologically integrating the new multitasking (or automated chauffeur) feature in demand 
models/components, as discussed in the previous gap, it is equally essential to collect data to validate the 
impacts of the new feature on household activity patterns or shift. The automated chauffeur feature enables 
numerous scenarios where household members can utilize it to maximize their productivity or convenience. 
However, the extent to which those scenarios will apply is unknown. Therefore, the household interaction 
rules and their travel decision-making process in the envisioned CAV AMS system should be updateable 
as new data on these interactions become available either through stated preference surveys in the short 
term or observed behavior in the long term. 

Gaps in Existing Connected and Automated Vehicle Analysis, 
Modeling, and Simulation Capabilities for Evaluating Supply 
Changes 
The major supply changes associated with the deployment of CAV systems include the emergence of new 
mobility options and infrastructure upgrading with wireless telecommunications. While predicting the 
emergence of new modes is beyond the capability of any tool, most researchers built special purpose tools 
to model the operations of CAV enabled mobility options such as SAVs (54; 56; 60; 61). As for infrastructure 
changes, most tools lacked the incorporation of wireless telecommunication in their systems configurations 
which is an essential feature of CAV systems. The remaining of this section discusses how the CAV AMS 
framework addresses those main gaps.  

Predicting New Mobility Options Enabled by Connected and Automated 
Vehicle Systems and Their Characteristics  
As mentioned earlier, the rapid development in wireless telecommunication technologies and the high 
adoption rate of those technologies have enabled radically new forms of mobility and opportunities for multi-
mode integrations that were not possible or thought of less than 20 years ago. Predicting those changes, 
however, is beyond of capability of any analysis tool. It would rather require transport planners and decision 
makers to follow the trends in technological advancements and use their professional judgment. 



 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  107 

To reduce the uncertainty surrounding the operation and behavior of new mobility systems, the supply 
changes component of the CAV AMS framework defines operational scenarios of the new modes based on 
current and predicted market trends, technology development, regulations, and ultimately expert judgment. 
Those scenarios will determine the range of likely operational characteristics of new modes and the type of 
telecommunication technology in place (V2I, V2V, or V2X). 

Describing the Unique Characteristics of Connected and Automated 
Vehicle Systems Integrated into Fleet Management Modeling 
The operation of SAV fleets has been the focus of many researchers as one of most anticipated new modes 
of travel. One of the major limitations of current simulation tools modeling the operations of SAV fleets is 
the lack of actual data describing the characteristics of anticipated AVs, such as costs, and relying on 
multiple assumptions regarding those characteristics. As in the case of other data-related gaps, the 
interaction rules within SAV management models in the CAV AMS framework should be updateable as new 
information becomes available regarding SAV fleets. 

Incorporating Wireless Telecommunication in Infrastructure Representation 
(V2V/V2I/V2X) 
As mentioned in the previous chapter, wireless telecommunication is missing from the representation of 
current modeling tools despite its integral role in the operation and behavior of CAV systems. Therefore, 
the envisioned CAV AMS system integrates a setup of wireless telecommunication coverage within the 
network representation of the supply component. Depending on the type of wireless telecommunication 
technology used, this representation can be in the form of nodes/links with communication ranges or areas 
of coverage. 

Gaps in Existing Connected and Automated Vehicle Analysis, 
Modeling, and Simulation Capabilities for Evaluating 
Operational Performance 
To evaluate the performance impacts of CAV systems, researchers have mainly used microsimulation tools 
which offer the highest fidelity to comprehensively capture the characteristics of CAV systems including but 
not limited to car-following behavior, lane-changing, sensor detection capabilities, reaction time and 
wireless telecommunications (89). To evaluate the strategic-level performance of large regional networks; 
however, researchers used microscopic tools to generate fundamental relationships and performance 
characteristics that can be used in conjunction with mesoscopic simulation-based tools at varying levels of 
spatial and temporal detail (66; 120).  

The above-mentioned tools were used to evaluate different models for CAV driving behaviors such as ACC 
(17; 37; 41) and CACC (38; 42; 49; 66) at the facility and network levels. Some specialized tools were used 
to evaluate the impacts of those driving behaviors at different market penetration levels (94; 123). CAV-
related policies and advanced traffic control algorithms were also evaluated such as dedicated AV lanes 
(105) and speed harmonization (75-78). 
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The main limitations of the existing CAV AMS tools for evaluating operational performance is 1) missing 
representation of key CAV elements in performance models such as vehicle sensor performance and 
wireless telecommunications and 2) missing actual data to validate the different driving behavior of new 
systems and their interactions with other agents (pedestrians, bicyclists) in urban environments. Those 
gaps are discussed in further detail in the remaining of this section. 

Representating the Effect of Wireless Telecommunication Networks and 
Information Flow on Connected and Automated Vehicle Performance  
The lack of abstract representation of wireless telecommunications and their impacts on connected driving 
behavior is one of the main gaps in existing microsimulation tools. As an integral part of the operation and 
performance of CAV systems, an abstract and simple representation of wireless telecommunications needs 
to be integrated within performance models to capture its impacts on the behavior of the new systems. One 
of the impacts at the individual vehicle level, for instance, is reduced reaction times of connected drivers. 
Those drivers would be more aware of the prevailing traffic conditions by receiving this information through 
V2I/V2V technology. On a system level, the communication range of CAVs affects the stability of the whole 
traffic stream which increases at higher communication ranges (124). 

The comprehensive framework of the envisioned CAV AMS system addresses this limitation by integrating 
wireless telecommunication and information flow into the modeling framework for evaluating operational 
performance, see Figure 4. Through this integration, different information routing protocols, including 
topology-based (ad-hoc) protocols (86-89) and position-based (cluster) protocols (48; 90-92), can be tested 
within the CAV AMS system and their impacts on the performance of CAV systems can be evaluated. 

Representing Sensor Performance Aspects that Influence Vehicle 
Performance 
Sensor performance is another unique feature of CAV systems (26) that is missing from existing CAV AMS 
capabilities. Those tools typically assume perfect operating conditions where sensors are fully accurate. 
This an unrealistic assumption since sensor performance degrades under certain conditions such as in the 
case of severe weather conditions (low visibility, reflective road) or in the case of a sensor damage or 
malfunction. This is more critical in the case of AVs as they rely on those sensors for environment perception 
and maneuvering (longitudinal and lateral).  

To address this gap, the proposed CAV AMS framework integrates sensor capabilities within operational 
performance models in the system. In car-following models, for example, the acceleration/deceleration 
behavior can depend on some sensor characteristics such as detection range. At higher detection ranges, 
CAVs can respond earlier and more gently to slower traffic ahead since vehicles would have more complete 
information about their surrounding environment. Maximum or desired speeds can also depend on the 
detection range. Sensor performance variability can be introduced by adding a stochastic parameter to 
some of the sensor characteristics such as field of regard and accuracy of speed and range detection. 
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Representing the Differences in Driving Behaviors between Manual and 
Connected Drivers  
Connectivity extends drivers’ perception of their surrounding environment beyond the visual scanning of 
isolated drivers, leading to a more responsive driving behavior (23). The main limitation, however, when it 
comes to modeling the distinct behavior of connected systems is the unavailability of actual data to validate 
the extent to which connectivity affects drivers’ behavior and their decisions. This limitation would have 
severely impacted the ability of CV models to produce reliable impact evaluations of the new driving 
behavior on the transportation system's performance. This is because the assumptions that may be used 
in CV models to capture the distinct driving behavior may be different from actual behavior. While 
addressing the lack of data requires collecting more data on the behavior of connected drivers, the 
proposed CAV AMS system would have the capability to calibrate/replace the driving behavior models 
within the operational performance component as new data becomes available. 

Supporting Development of Vehicle-following and Lane-changing Models  
A great diversity of automation systems, both isolated and cooperative, are under development and will 
have to be represented by the envisioned CAV AMS system. The driving behavior of those systems is 
fundamentally different from human-driven vehicles. It heavily depends on the equipped sensors and the 
control algorithms installed by car manufacturers in addition to the additional information that can be 
received through connectivity (26; 123; 127). While many studies modeled the behavior of different AV 
systems such as ACC (17; 37; 41) and CACC (38; 42; 49; 66), their main limitation is the shortage of actual 
data to validate the distinct vehicle-following and lane-changing behavior of AV systems. Therefore, as in 
the case of connected driving behavior, the AV driving models in the envisioned CAV AMS system can be 
calibrated/replaced with new data on the behavior of AVs at it becomes available. 

Modeling the Interactions of Connected and Automated Vehicles with 
Vulnerable Road Users in Urban Environments 
The interactions of CAV systems with vulnerable road users (VRUs), mainly pedestrians and bicyclists, in 
urban environments are different from road vehicle-to-vehicle interactions in multiple ways. For instance, 
detecting and identifying pedestrians and bicyclists at intersections is a more demanding process than 
identifying vehicles as it involves a much more complicated environment; signs, animals, buildings, traffic 
lights, etc. The integration of the aforementioned interactions within existing CAV AMS capabilities is often 
missing due to the lack of data to represent movements of pedestrians and bicyclists in urban environments 
at a level of fidelity sufficient to support modeling their interactions with CAVs. To that end, the proposed 
CAV AMS system should be able to integrate those interactions within the operational performance 
component when new data on VRUs are collected. 

Gaps in Existing Connected and Automated Vehicle Analysis, 
Modeling, and Simulation Capabilities for Evaluating 
Integrated Network Performance 
To understand the overall impacts of CAV system, it is necessary to capture the interactions of the different 
processes and aspects related to those systems at a network level. Existing CAV AMS tools mostly focus 
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on specific research questions related to CAV systems, such their impacts on traffic flow or mode choice, 
therefore, missing the relationships between those elements (for example how the travel time simulated 
affects mode choice). In other words, the main limitation of existing AMS capabilities with regard to 
evaluating the network-level impacts of CAV systems is the weak integration of the demand, supply, and 
performance models. Those are further discussed below. 

Integrating the Behaviors of Different Agents in a Network Context  
Evaluating the network-wide impacts of CAV systems requires capturing the interactions of different agents 
in a network context. Those agents include CAVs, travelers, mobility service providers, transit and network 
managers, freight shippers and carriers. However, as previously discussed, current AMS capabilities are 
built to answer questions about a specific agent on the network, and in many cases, for specific facility type. 
For example, some tools are built specifically to model CAVs on freeways, SAVs operations on a 
hypothetical network, or pedestrian movements at intersections. To address this gap, the proposed CAV 
AMS framework models the interactions of those different agents within an integrated platform. For 
example, the interactions between different modes in the demand component or simulating the operations 
of SAV fleets in mixed traffic. 

Integrating the Demand, Supply, and Operational Performance Components 
in a Connected and Automated Vehicle Analysis, Modeling, and Simulation 
System 
As noted earlier in the discussion, the implications of CAV technology are far reaching on multiple, yet 
interdependent levels (26). On the supply side, the technology is expected to support entirely new modes 
of mobility such as SAVs or hybrid transit systems. On the demand level, the availability of new mobility 
forms in addition to the improvements to current transportation systems through connectivity can affect the 
activity patterns and mobility choices of travelers. Finally, changes to both supply and demand in addition 
to the improvements brought by connectivity and automation to traffic flow ultimately affect the operational 
performance of transportation systems.  

The main limitation of the existing CAV AMS capabilities is that they do not capture the interdependencies 
of CAV impacts on supply, demand, and operation levels. To address the gap, the CAV AMS framework 
was built to integrate the aforementioned components into a full platform where the feedback of one 
component affects the output of another, see Figure 1. For example, one of the major factors that affect 
mode choice, in demand models, is travel time. In this framework, the operational performance component 
would simulate the operations of CAV systems on a network and feed dynamic travel times resulting from 
those simulations into the demand component to evaluate the impacts of CAV systems on mode choice. 
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Chapter 9. Project Case Study – Selected 
Testbed 

The objective of this case study is to conduct a proof-of-concept test of a prototype CAV AMS framework 
as discussed in the case study plan (131). The selected case study focuses on the operational performance 
impacts of CAV systems in a mixed traffic environment (i.e, CAVs and human drivers) at different market 
penetrations of the technology. To do so, the study uses an integrated traffic-telecommunication 
microsimulation tool that was developed at Northwestern University as a testbed. This chapter provides a 
description of the microsimulation tool and the modeling framework. 

The microsimulation platform is a special-purpose tool for simulating mixed traffic conditions on freeways 
in a connected environment. The platform integrates three different driving behaviors: regular vehicles, 
connected vehicles, and automated vehicles (connected and isolated) in addition to modeling V2I/V2V 
wireless telecommunications. The testbed uses a 3.5-mile section of I-290 in Chicago, Illinois (illustrated 
below). The remainder of this chapter discusses the modeling framework embedded in this platform. 

Figure 12. I-290E study segment in Chicago, IL. 
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Acceleration (Car Following) Framework 
The acceleration framework recognizes the differences in the longitudinal behavior of four distinct driving 
behaviors:  

1. Isolated-manual (regular human). 

2. Connected-manual (connected human). 

3. Isolated-automated (isolated robot). 

4. Connected-automated (connected robot). 

Isolated-Manual Vehicles 
Modeling isolated-manual (regular) vehicles relies on the acceleration model posited by Hamdar et al. (132), 
which is based on Kahneman and Tversky’s prospect theory, as extended by Talebpour et al. (96) to capture 
drivers' different behaviors in congested versus uncongested regimes. Accordingly, based on prospect 
theory, they introduced two value functions, one for modeling driver behavior in congested regimes and one 
for modeling driver behavior in uncongested regimes. The uncongested traffic value function in this model 
has the following form: 

          [1] 

where UC
PTU  denotes the value function for the uncongested traffic conditions 0>γ , mw are parameters 

to be estimated, and 2
0 /1 sma = is used to normalize the acceleration. They proposed the following value 

function for the congested traffic condition: 
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where C
PTU  denotes the value function for the congested traffic conditions. >′γ

to be estimated. At each evaluation stage, based on drivers’ perception of their s
drivers employ the corresponding value functions to evaluate the gains from the
introduced a binary probabilistic regime selection mechanism into the evaluati
the resulting utility to evaluate each acceleration value, given by: 
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          [3] 
 
where PTU , )(CP , and )(UCP denote the expected value function, the probabilities of driving in a 
congested traffic condition, and the probability of driving in an uncongested traffic conditions, respectively. 
Note that it is assumed that drivers choose the acceleration value function that gives them the higher value 
for the observed acceleration. Once the expected value function is calculated, the total utility function of 
acceleration can be formulated as follows: 
 

      [4] 
 

where inp , denotes the crash probability. Finally, to reflect the stochastic response adopted by the drivers, 

the logistic functional form specified by Hamdar et al. (95) is used to calculate the probability density 
function: 
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where PTβ reflects the sensitivity of choice to the utility )( naU .  

The model has been extensively tested and validated using NGSIM trajectory data and is implemented in 
simulations recognizing the heterogeneity in user preferences captured in the available data.  

Connected-Manual Vehicles 
 

These vehicles are expected to have the capability of sending/receiving information to/from other vehicles 
and infrastructure-based equipment. Assuming reliable connectivity in the vehicle-to-vehicle (V2V) and 
vehicle-to-infrastructure (V2I) communications networks, each vehicle will receive information about other 
vehicles in this network. The driver also receives real-time updates about decisions made by the traffic 
management center (TMC); e.g., real-time changes in speed limit. However, this information may not be 
available at all times and locations, and drivers’ behavior may change according to the amount of 
information they receive.  

With active V2V, drivers are certain about other (connected) drivers’ behaviors. They are also aware of the 
driving environment, road condition, and weather condition downstream of their current location. A 
deterministic acceleration modeling framework is suitable for modeling this environment. This tool utilizes 
the Intelligent Driver Model (IDM) to model this connected environment. While capturing different 
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congestion dynamics, this model provides greater realism than most of the deterministic acceleration 
modeling frameworks.  

IDM specifies a following vehicle’s acceleration as a continuous function of the vehicle’s current speed, the 
ratio of the current spacing to the desired spacing, and the difference between the leading and the following 
vehicles’ velocities. Perceptive parameters such as desired acceleration, desired gap size, and comfortable 
deceleration are considered in this model:  
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where nδ  is the free accelaration exponent, nT  is the desired time gap, na  is the maximum accelaration, nb  

is the desired decelaration, ns0  is the jam distance, and nv0  is the desired speed. Those are parameters to 
be calibrated. Note that the braking term in the IDM is designed to preclude crashes in the simulation. 

When V2V is not active, driving is essentially similar to that of unconnected vehicles, as no active 
communication exists between vehicles. In the presence of V2I communications, drivers directly receive 
information about TMC decisions and recommendations—for example, speed limits in the case of speed 
harmonization—and can thus follow it. However, their reaction times would still be sluggish like regular 
drivers. 

Isolated-Automated Vehicles 
Two key factors should be considered in modeling the car-following behavior of automated vehicles: (1) 
their ability to constantly monitor other vehicles in their vicinity, which can result in a deterministic behavior 
in dealing with other drivers’ behavior; and (2) their ability to react rapidly to any changes in the driving 
environment. Therefore, a deterministic acceleration modeling framework is suitable for modeling the car-
following behavior of automated vehicles. Considering the sensor range and accuracy limitations, Talebpour 
et al. (25) introduced a car-following model for automated vehicles (connected and isolated) based on the 
previous simulation studies by Van Arem et al. (133) and Reece and Shafer (99). They simulated individual 
sensors in order to create the input data for the acceleration model. Our approach assumes that all 
automated vehicles are equipped with similar sensors. Figure 13 illustrates the sensor formation of an 
automated vehicle. These sensors are (Smart Micro) Automotive Radar (UMRR-00 Type 30) with 90m±2.5 
percent detection range and ±35 degrees horizontal Field of View (FOV). Each sensor updates the sensing 
information every 50ms and can track up to 64 objects. 
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Figure 13. Radar sensor formation on an automated vehicle. 
Considering the limitations of the sensors, automated vehicles should be ready to react to any situation 
outside of their detection range as soon as it is spotted (e.g., a vehicle at a complete stop right outside of 
the sensors detection range). Moreover, if a leader is spotted, it is reasonable to assume that the speed of 
the automated vehicle should be low enough to allow it to stop if its leader decides to decelerate with its 
maximum deceleration rate and reach a full stop. Considering the maximum possible deceleration for the 
automated vehicle and its leader, maximum safe speed can be calculated using the following equations: 
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where n and n-1 represent the automated vehicle and its leader, respectively;  is the location of vehicle 

n, is the length of vehicle n, is the speed of vehicle n, is the reaction time of vehicle n, and is the 
maximum deceleration of vehicle n. Figure 14 illustrates the concept of maximum safe speed; any speed 
below the maximum safe speed curve is considered to be safe. 

In addition to the safety constraint, the vehicle movement model should be considered. This study adopted 
the model by Van Arem et al. to calculate the acceleration of the automated vehicle at every decision point:  
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where is the acceleration of vehicle ; ,  and are model parameters; is the spacing; and  is 

the maximum between minimum distance ( ), following distance based on the reaction time ( ), 

and safe following distance ( ). In this study, minimum distance is set at 2.0 m and  and is 

calculated as follows: 
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Figure 14. Maximum safe speed curve 
 
Finally, the acceleration of the automated vehicle can be calculated using the following equation: 
 

 ( ))((),(min)( max tvvktata n
d
nn −=    [13] 

 

where k is a model parameter. In this study, based on the recommendations of Arem et al. (133), ,
, , and . 

Connected Automated Vehicles 
Modeling these vehicles in this framework is similar to modeling isolated-automated vehicles. However, 
those models assume a larger sensor range of 300m instead of 90 due to the extra information that 
connected vehicles can collect through wireless telecommunication (134). 
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Lane-changing Model 
Lane changing is a cause of perturbations in multilane traffic and is especially sensitive to human error, 
particularly at high speeds in high-density environments. Hence, connectivity and automation are expected 
to enable smoother lane changes with fewer abrupt maneuvers than human-negotiated cases. The 
literature offers few examples to model these situations under connected and/or autonomous cases. 
Talebpour et al. (94) developed a game-theory-based lane-changing model that captures the dynamic 
interactions between drivers during discretionary and mandatory lane-changing maneuvers and introduces 
a game structure to model behavior when drivers are not aware of the nature of the lane-changing 
maneuver (i.e., mandatory vs. discretionary). They proposed two game types:  

• Two-person non-zero-sum non-cooperative games under complete information to model lane-
changing decisions when drivers and automated vehicles are aware of the nature of lane-changing 
maneuver.  

• Two-person non-zero-sum non-cooperative games under incomplete information to model lane-
changing decisions in the absence of such knowledge. 

The target vehicle (i.e., the one that is changing lanes) is assumed to have two pure strategies (change 
lanes, wait) and the lag vehicle (the new follower after the lane-changing maneuver) has three pure 
strategies (accelerate, decelerate, and change lanes). Table 19 and Table 20 illustrate the structure of 
discretionary and mandatory lane-changing games, respectively. 

Table 19. Discretionary lane-changing game with inactive V2V communication in normal form.  

ACTION 
Target Vehicle 

 (Change Lane)  (Do not Change Lane) 

La
g 

Ve
hi

cl
e  (Accelerate) ( ) ( ) 

 (Decelerate) ( ) ( ) 

 (Change Lane) ( ) ( ) 
Source: A. Talebpour, H.S. Mahmassani, F.E. Bustamante. 2016. “Modeling Driver Behavior in a Connected 
Environment: Integrated Microscopic Simulation of Traffic and Mobile Wireless Telecommunication 
Systems,” Transportation Research Record: Journal of the Transportation Research Board 2560(1): 75-86. 

  

1A 2A

1B 1111, RP 1212 , RP

2B 2121, RP 2222 , RP

3B 3131, RP 3232 , RP
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Table 20. Mandatory lane-changing game with inactive V2V Communication in Normal Form. (127) 

ACTION 
Target Vehicle 

 (Change Lane)  (Do not Change Lane) 

La
g 

Ve
hi

cl
e 

1A 2A

1B 1111,QP 1212 ,QP

2121,QP 2222 ,QP

3131,QP 3232 ,QP

 (Accelerate) ( ) ( ) 

 (Decelerate) ( ) ( ) 

(Change Lane) ( ) ( ) 
Source: A. Talebpour, H.S. Mahmassani, F.E. Bustamante. 2016. “Modeling Driver Behavior in a Connected 
Environment: Integrated Microscopic Simulation of Traffic and Mobile Wireless Telecommunication 
Systems,” Transportation Research Record: Journal of the Transportation Research Board 2560(1): 75-86. 

When drivers or automated vehicles are uncertain about the nature of the lane-changing maneuver, 
Harsanyi transformation is used to transform a game of incomplete information to a game of imperfect 
information. This method introduces “nature” as a player—one that determines the nature of the lane-
changing maneuver with a certain probability. Figure 15 illustrates the structure of the transformed game in 
extended form. Additional detail about the calibration and validation of these game structures can be found 
in Talebpour et al. (25)  

Figure 15. Lane-changing game with inactive V2V communication in extensive form. 

Jointly Modeling Telecommunications Flow Aspects for 
Connected Vehicle Systems 
In addition to the challenges associated with modeling driver behavior in a connected environment, 
simulating wireless communications to assess connectivity in V2V/V2I networks is essential for determining 
the existence of a reliable, uninterrupted flow of information, which is necessary for a reliable connected 
driving environment. Full connectivity in these wireless communications networks does not always exist 
due to several factors, including physical barriers and signal interference. Information availability plays a 
critical role in driver decision making. Considering the effects of information on drivers' operational, tactical, 
and strategic decisions, simulating the flow of information along with vehicular movements is essential for 
determining the information available to individual drivers while making driving-related decisions. 

© 2018 Hani Mahmassani 
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Accordingly, several studies have attempted to simulate the flow of information along with vehicular 
movements. However, most of these efforts do not capture the influence of additional information on driver 
behavior and vehicular movements, though there are a few exceptions. Moreover, these studies use simple 
acceleration and lane-changing frameworks that are not sensitive to the flow of information in V2V/V2I 
communications networks. For instance, Traffic and Network Simulation Framework (TraNS) is based on 
an integration of Simulation of Urban MObility (SUMO) and NS-2. TraNS, in its application-centric mode, 
provides a basic mechanism to impose certain decisions (e.g. reducing speed and changing lane) to drivers 
through wireless communications. However, the modeling framework in SUMO does not recognize different 
vehicle types (connected, automated, and regular vehicles) and it is not sensitive to the flow of information 
in a connected environment. Other cited examples suffer similar drawbacks.  

For V2V/V2I communications networks, similar to any wireless network, one can define a link between two 
nodes if they communicate with each other. Let ri and rj denote the effective range of communication for 
nodes i and j, respectively. Let rij represent the Euclidean distance between nodes  i and  j. These two 
nodes can communicate with each other if rij < ri and rij < rj. Let P = Pi denote the transmission power at 
node i. Adopting the propagation-receiver model without fast-fading and shadowing effects, node j can 
receive information from node i if: 

   
snr

noise
r

P
ij

i

≥
α

    [14] 

Where snr denotes signal-to-noise ratio; α is the pass-loss parameter and is equal to 2 for free-space 
propagation. A similar condition is required for node j to receive information from node i. Once both of these 
conditions are satisfied, these two nodes can communicate with each other.  

Considering Equation 9 with the above assumptions, the maximum effective range for node i can be 

calculated as α
1

ii PR = . Every node that falls into this range can hear from node i. In other words, in order 
to communicate, both nodes should lie inside each other’s effective communication range. 

The above link construction process can be used in any wireless network. However, V2V and V2I 
communications networks, unlike most wireless networks, change dynamically over time, which makes the 
link construction process quite challenging. This platform adopts Network Simulator 3 (ns-3) to simulate 
wireless communications and to construct communication links; ns-3 is a discrete-event communications 
network simulator that implements the IEEE 802.11p protocol, which is is specifically designed to address 
the communication needs in ITS applications and is the standard protocol for V2V and V2I communications. 
As a result, the model uses the IEEE 802.11p protocol for dedicated short-range communications (DSRC). 
Two factors play important roles in simulating V2V and V2I communications networks: the information 
routing protocol and the node mobility model. 
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Performance Measures 
Throughput 

CAV technologies are expected to increase the flow throughput of transportation facilities by increasing flow 
densities. However, such impacts are dependent on the market penetration and operating characteristics 
of those technologies. Throughput can be quantified by measuring the number of vehicles passing through 
per hour and the variability of speeds within a facility segment. The fundamental diagram (flow-density) was 
used in this case study to measure throughput. 

Stability 

Flow stability refers to the traffic stream’s ability to recover its steady-state properties (density-speed) after 
incurring a perturbation. The scatter in the traffic fundamental diagram was used as an indicator of traffic 
stability. 

Travel Time Distribution 

Travel time distribution refers to the distribution of travel times experienced by individual vehicles in the 
simulation. It is another indicator of traffic congestion and speed experienced by simulated drivers. 
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Chapter 10. Case Study Scenarios – 
Description and Simulation Results 

Using the integrated microsimulation platform introduced in the previous chapter, three sets of scenarios 
were evaluated. Those scenario sets serve as a small-scale experiment using a CAV AMS prototype in 
addition to answering a number of research questions regarding the operations of CAV systems. The three 
sets evaluated below analyze the following: 

• The performance of mixed traffic flow.
• The impact of AV sensor performance on mixed traffic flow.
• The impact of automated truck platooning on mixed traffic flow.

The remainder of this chapter presents the rationale, methodology, and simulation experiments for each 
set of scenarios. 

Performance of Mixed Traffic Flow 
To explore questions regarding the flow impacts of automated and connected vehicles, it is important to 
formulate microscopic models that capture the capabilities of the new technologies as well as the attendant 
behavior of human drivers. For human drivers, one could rely on a variety of existing models, albeit actual 
behavior will only be observed when there is sufficient deployment of these technologies. The specific logic 
for automated vehicles will be robotic in nature and essentially supplied by the operating entity, and thus 
likely proprietary. However, recent experiments on prototype vehicles provide a good idea about the 
expected behavior of those vehicles. Connected vehicle behavior would be largely dependent on the 
implemented capabilities. With the expected availability of post-deployment data, these microscopic 
mechanisms will likely be reviewed and improved. 

Methodology 
As CAV technology is expected to enter the market gradually, an essential question to researchers and 
policymakers is how the interactions among the different types of drivers (isolated-manual, connected-
manual, isolated-automated, and connected-automated) would affect traffic flow performance in the short 
run at low CAV market penetration and in the long run at high market penetration. To answer that question, 
the four distinctive driving behaviors in the microsimulation testbed are used to simulate those interactions 
and evaluate their effects on traffic flow performance. The scenarios presented in this section are intended 
to evaluate traffic performance in mixed traffic conditions by varying the market penetration (vehicle 
percentage) of connected-manual, isolated-automated, and connected-automated vehicles. These 
scenarios attempt to answer three main research questions explored in the following section: 
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1) The impact of connected-manual driving on traffic flow performance. 
2) The impact of isolated-automated driving on traffic performance. 
3) The impact of connected-automated driving on traffic flow performance. 

Results and Discussion 
Impact of Connected Manual Driving on Traffic Performance 

The following set of scenarios, summarized in Table 21, test the impact of connected manual driving by 
varying the market penetration of the connected-manual vehicles at low (30 percent), medium (60 percent), 
and high (90 percent) penetration rates. Automated vehicles, whether connected or isolated, were assumed 
to be zero in those scenarios. 

Table 21. Connected-manual driving scenarios by market penetration rate (percent). 

Scenario Description 

Isolated-
Human 

(RV) 

Connected-
Human 

(CV) 

Isolated-
Automated 

(AV) 

Connected-
Automated 

(CAV) 
Baseline – Human 100 0 0 0 
Low CV 70 30 0 0 
Medium CV 40 60 0 0 
High CV 10 90 0 0 

Source: FHWA 2018 

Figure 16 shows the fundamental diagrams for the four scenarios mentioned above. The results indicate 
that connectivity at medium to high market penetration rates (> 60 percent) can improve traffic throughput 
compared to the baseline case of 100 percent isolated-manual vehicles. The extra information received by 
connected drivers through wireless telecommunication improves their responsiveness and therefore the 
overall performance of traffic. Figure 17 shows the travel time distribution for the abovementioned 
scenarios. As seen from the figures, connectivity at low- to high- market penetration rates can also improve 
travel time, as seen by the shift in the distribution to the towards the lower travel time bins (left side). The 
improved responsiveness of connected drivers lowers the likelihood of unexpected slow-downs and overall 
travel time. 

   

 

 

a) Base (100 percent regular 
vehicles). 

b) Connected vehicle market 
penetration at

 
 30 percent. 
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Figure 16. Fundamental diagrams for low (30 percent), medium (60 percent), and high (90 percent) 
connected vehicle market penetration rates. 

c) Connected vehicle market
penetration at 60 percent.

Figure 17. Travel time distributions for low, medium, and high connected vehicle market 
penetration rates. 

d) Connected vehicle market
penetration at 90 percent.

a) Base (100 percent regular
vehicles). 

b) Connected vehicle market
penetration at 30 percent.

c) Connected vehicle market
penetration at 60 percent.

d) Connected vehicle market
penetration at 90 percent.
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Impact of Isolated Automated Driving on Traffic Performance 

The following set of scenarios, summarized in Table 22, evaluates the impact of isolated-automated driving 
behavior on traffic performance. Isolated-automated refers to automated vehicles that rely solely on their 
sensors for environment perceptions and driving logic without receiving any information from surrounding 
connected vehicles. The scenarios test traffic performance (throughput and travel time) at three automation 
market penetration rates: low (30 percent), medium (60 percent), and high (90 percent) as seen in the 
following figures. 

Table 22. Isolated automated driving scenarios by market penetration rate (percent). 
Scenario Description Isolated-

Human 
(RV) 

Connected-
Human 

(CV) 

Isolated-
Automated 

(AV) 

Connected-
Automated 

(CAV) 
Baseline – Human 100 0 0 0 
Low AV 70 0 30 0 
Medium AV 40 0 60 0 
High AV 10 0 90 0 

Source: FHWA 2018 
 
Figure 18 shows the fundamental diagrams of isolated-automated driving scenarios at each market 
penetration rate. Those diagrams show that automated driving can significantly improve traffic throughput 
and stability at medium-to-high (>60%) market penetration rates. The improvement in traffic performance 
is higher than with connectivity alone due to the highly responsive and robotic driving behavior of automated 
vehicles, which is fundamentally different from human drivers. Figure 19 shows the travel time distribution 
of the isolated-automated driving scenarios. As expected, automated driving improves the travel time of 
individual vehicles. The figures show that the distributions at low-medium market penetration rates shifts 
significantly towards lower values. In the 90 percent market penetration case, most vehicles drive at free 
flow speed. 

       

 
a) Base (100 percent regular 

vehicles). 
b) Automated vehicle market 

penetration at
 
 30 percent. 
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Figure 18. Fundamental diagrams for low, medium, and high isolated-automated vehicle market 
penetration rates. 

   

 

   

 

 
 

Figure 19. Travel time distributions for low (30 percent), medium (60 percent), and high (90 
percent) isolated-automated vehicle market penetration rates. 

 

Impact of Connected Automated Driving on Traffic Performance 

a) Base (100 percent regular 
vehicles). 

b) Automated vehicle market 
penetration at

 
 30 percent. 

c) Automated vehicle market 
penetration at

 
 60 percent. 

d) Automated vehicle market 
 penetration at 90 percent. 

 

c) Automated vehicle market 
penetration at

 
 60 percent. 

d) Automated vehicle market 
penetration at

 
 90 percent. 
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The following set of scenarios, summarized in Table 23, is intended to evaluate the impact of connected-
automated driving behavior on traffic performance. Unlike isolated-automated vehicles, connected-
automated vehicles rely on both their sensors and wireless telecommunication for perceiving the 
surrounding environment and control logic. The models used in these scenarios are different in two main 
ways: 1) the longitudinal car-following behavior assumes a significantly higher sensor range (300m) due to 
the fusion of information sources by those vehicles (134), and 2) lane-changing behavior assumes a 
connected environment, which is more responsive, as discussed in the modeling framework. (See the 
discussion of the Lane-changing Model in Chapter 9 for more information.)  

Table 23. Connected-automated driving scenarios based on market penetration rate (percent). 

Scenario Description 

Isolated-
Human 

(RV) 

Connected-
Human 

(CV) 

Isolated-
Automated 

(AV) 

Connected-
Automated 

(CAV) 
Baseline – Human 100 0 0 0 
Low CAV 70 0 0 30 
Medium CAV 40 0 0 60 
High CAV 10 0 0 90 

Source: FHWA 2018 

Figure 20 shows the fundamental diagrams for the connected-automated driving scenarios. The graphs 
show that connected-automated driving can lead to significant improvements in traffic throughput and 
stability at medium to high market penetration rates, as in the case of isolated-automated driving. This 
improvement is slightly greater than that of isolated-automated scenarios. This is due to the higher sensor 
range assumed for those vehicles. Similarly, Figure 21 shows that connected-automated driving can lead 
to significant improvements in travel time, as seen in the distribution shift to lower travel time values. This 
improvement is also higher than that of the isolated-automated vehicle scenarios. 
 

     

 a) Base (100 percent regular 
vehicles). 

b) Connected vehicle market 
penetration at

 
 30 percent. 
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Figure 20. Fundamental diagrams for low, medium, and high connected-automated vehicle market 
penetration rates. 

       

 

       

 

 
 

Figure 21. Travel time distributions for low, medium, and high connected-automated vehicle 
market penetration rates. 

c) Connected vehicle market 
penetration at

 
 60 percent. 

d) Connected vehicle market 
penetration at

 
 90 percent. 

a) Base (100 percent regular 
vehicles). 

b) Connected vehicle market 
penetration at

 
 30 percent. 

c) Connected vehicle market 
penetration at

 
 60 percent. 

d) Connected vehicle market 
penetration at

 
 90 percent. 
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Impact of AV Sensor Performance on Mixed Traffic Flow 
Sensor performance is a key element of CAV systems and directly affects their operational performance 
(26). This is more critical in the case of AVs as they rely almost exclusively on those sensors for environment 
perception and maneuvering (longitudinal and lateral). For example, an AV needs to estimate the distance 
to the front vehicle and its speed so that the AV can accelerate and decelerate safely. An AV also needs to 
detect surrounding vehicles to be able to change lanes safely and efficiently.  

Despite the integral role sensor performance plays in CAV operations, a representation of it is missing in 
almost all existing CAV AMS capabilities. Those tools typically assume perfect operating conditions where 
sensors are fully reliable. This an unrealistic assumption since sensor performance degrades under certain 
conditions, such as in the case of severe weather conditions (low visibility, reflective road) or in the case of 
a sensor damage or malfunction.  

The sub-optimal sensor operating scenarios can negatively impact the driving behavior of CAV systems 
and, therefore, needs to be captured in CAV AMS systems. For example, the lower detection range of AVs 
under severe weather conditions can affect the speed at which those vehicles operate and the size of the 
safe gap they require to change lanes. Furthermore, missing sensor representations in those performance 
models would reduce the capability CAV AMS systems to answer important questions related to the 
operation of CAV systems in the event of system failure as well as the impact of those failures on traffic 
flow; e.g., How would the driving behavior of an L2 AV vehicle transition to manual driving in the case of 
sensor failure, and how would that impact the traffic flow? Would that extra reaction time create a 
shockwave? This is also important for answering cyber-security related questions; e.g., How would the 
vehicle operate if the information it receives is tampered with, and how would that affect the performance 
of the whole system? This case study attempts to answer some of the traffic performance questions by 
modifying the AV car-following models. 

Methodology 
The scenarios in this section evaluate two types of sensor performance attributes that affect the 
performance of automated vehicles and, therefore, the overall performance of traffic flow. Those are the 1) 
distance measurement error (to a leading vehicle) and 2) vehicle sensor detection range. Distance 
measurement error directly impacts the car-following behavior of automated vehicles. If, for example, a 
measured distance is greater than it should be, an automated vehicle could accelerate more aggressively 
given the additional measured distance. As for AVs’ sensor detection range, it directly affects the maximum 
speed at which vehicles can drive and, therefore, the overall speed of traffic stream. 

Distance measurement in AV car-following models is assumed to have no errors, an assumption that is 
unrealistic in a real-world scenario. To address this limitation, an error term 𝜀D was added to the acceleration 
formula of automated vehicles as follows: 

ai𝑑(t) = kaai−1(t − 𝜏) + kv(vi−1(t − 𝜏) − vi(t − 𝜏)) + k𝑑((si + εD)(t − 𝜏) − sref) [15] 

Where ai𝑑 is the acceleration of vehicle i; ka, kv, and k𝑑 are model parameters; si is vehicle spacing; and 
sref is the minimum between minimum distance (sm𝑚𝑚n), following distance based on the reaction time 
(ssyst𝑠𝑠𝑠𝑠). This error term captures the stochasticity in sensor performance. Since actual data on sensor 
performance is limited, due to the confidentiality of automated vehicle development, a sensitivity analysis 
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was performed for sensor range error between 10 percent and 30 percent. The error term is assumed to 
be uniformly distributed between a = -error rate and b = +error rate. For example, if an error term of 10 
percent is evaluated and sensor range is 100m, then the error term distribution parameters would -10 and 
10. 

As for sensor detection range, current car following models assume perfect operational conditions with fully 
reliable sensors. In a real-world scenario, however, sensor range can be affected by factors such as low 
visibility or inclement weather conditions. To capture this variation in detection range, a negative error term 
𝜀R was added to the maximum speed formula of automated vehicles as follows: 

 ∆x = Sen𝑆𝑆or D𝐷𝐷𝐷𝐷𝐷𝐷c𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 R𝑅𝑅𝑅𝑅g𝑅𝑅 + 𝜀R 

 vm𝑚𝑚x = √−2ai𝑑𝑑𝑑cc∆x [16] 

where i and i − 1 represent the automated vehicle and its leader, respectively; xi is the location of vehicle 
i; li is the length of vehicle i; vi is the speed of vehicle i; τ is the reaction time of vehicle i; and ai𝑑𝑑𝑑cc  is the 
maximum deceleration of vehicle i. As in the case of the distance measurement error, a sensitivity analysis 
was conducted for range of sensor drops between 10 percent and 30 percent. The error term was also 
assumed to be uniformly distributed between 0 and error rate. 

Results and Discussion 
Distance Measurement Error Scenarios – Low AV Market Penetration (30 percent) 

The following scenarios, summarized in Table 24, evaluate the impact of distance measurement error on 
traffic flow performance and travel time. Three main error rates were considered: 10 percent, 20 percent, 
and 30 percent. In those scenarios, a mixed traffic condition was assumed with a low AV market penetration 
rate. This low penetration rate tests how the distance measurement error would affect the overall traffic 
performance at early deployment of the technology. 

Table 24. Distance measurement error scenarios in the low (30 percent) AV market penetration 
condition (percent). 

Scenario Description 
Isolated-
Human 

Isolated-
Automated 

Measurement Error (𝜀D) – 
Distance to Lead Vehicle 

Low AV - Perfect Sensor Performance 70 30 0 
Low AV – 10% error 70 30 10 
Low AV – 20% error 70 30 20 
Low AV – 30% error 70 30 30 

Source: FHWA 2018 
 
Figure 22 shows the fundamental diagrams for distance measurement error scenarios in low AV market 
penetration conditions (30 percent). As seen from the graphs, distance measurement error has minimal 
impact on traffic flow throughput and stability due to the low number of AVs in those scenarios. Similarly, 
as seen from the almost unchanged distributions in Figure 23, distance measurement errors cause no 
significant change to travel time. 
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Figure 22. Fundamental diagrams for distance measurement error scenarios at a low (30 percent) 

AV market penetration rate. 

      

 

      

 
 

 
 
 
 

 
Figure 23. Travel time distribution for distance measurement error scenarios at a low (30 percent)  

AV market penetration rate. 
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Distance Measurement Error Scenarios – High AV Market Penetration (70 percent) 

The scenarios shown in Table 25 evaluate the impact of distance measurement errors in highly automated 
traffic streams (70 percent). Error rates of 10 percent, 20 percent, and 30 percent were considered and 
compared to the baseline scenario of perfect (zero error) performance. Those scenarios test whether the 
distance measurement error has a higher impact on traffic performance than the previously tested scenarios 
of low traffic automation. 

Table 25. Distance measurement error scenarios in the low (30 percent) AV market penetration 
condition (percent). 

Scenario Description 
Isolated-
Human 

Isolated-
Automated 

Measurement Error (𝜀D) – 
Distance to Lead Vehicle 

High AV - Perfect Sensor 
Performance 30 70 0 

High AV – 10% error 30 70 10 
High AV – 20% error 30 70 20 
High AV – 30% error 30 70 30 

Source: FHWA 2018 
 

Figure 24 shows the fundamental diagrams for the distance measurement error scenarios in high AV market 
penetration conditions ( 70 percent). The figures show that an error rate of 30 percent could lead to a 
marginal increase in traffic flow. While this result may seem counterintuitive at first glance, this may indicate 
that the errors can lead to more aggressive driving behavior (higher acceleration) due to the higher 
perception of safety by automated vehicles that measure a distance that is higher than the actual one—for 
the particular logic modeled in this exercise. However, this result is only seen at the higher error rate 
scenario (30 percent), where measurement error is significant enough to affect driving behavior. It is also 
evident in highly automated traffic streams where there are enough AV vehicles to impact the overall 
performance of the traffic stream. Figure 25 shows the travel time distributions for the same scenarios. As 
seen in the graphs, the higher error rate of 30 percent could lead to a small shift in the distribution toward 
lower travel time values, which confirms the potentially aggressive driving of some AVs under the current 
logic modeled in this illustration. 
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Figure 24. Fundamental diagrams for distance measurement error scenarios at a high (70 percent)  

AV market penetration rate. 
 

   

 

   

 

 

Figure 25. Travel time distribution for distance measurement error scenarios at a high (70 percent)  
AV market penetration rate. 
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Distance Measurement Error Scenarios – High CAV Market Penetration (70 percent) 

Table 26 shows the simulated scenarios to evaluate the impact distance measurement errors for highly 
connected and automated traffic streams (CAV 70 percent). Similar to previous scenarios, three error rates 
ranging from 10 percent to 30 percent were tested. 

Table 26. Distance measurement error scenarios in the high (70 percent) CAV market penetration 
condition. 

Scenario Description 
Isolated-
Human 

Connected-
Automated 

Measurement Error (𝜀D) – 
Distance to Lead Vehicle 

High CAV - Perfect Sensor Performance 30 70 0 
High CAV – 10% error 30 70 10 
High CAV – 20% error 30 70 20 
High CAV – 30% error 30 70 30 

Source: FHWA 2018 
 

Figure 26 shows the fundamental diagrams for the distance measurement error scenarios in high CAV 
market penetration conditions (70 percent). As in the case of the highly automated stream scenarios tested 
in a previous section, the graphs show that high error rates (30 percent) can lead to a small increase in 
traffic throughput due to the potential for more aggressive driving among some vehicles. While connectivity 
in this modeling framework improves the range of sensors due to the fusion of different data sources 
(sensors and other vehicles through wireless telecommunication), it does not improve the sensors’ 
measurement accuracy. Therefore, the overall impact of errors is similar to the case of isolated-automated 
traffic streams. Figure 27 shows the travel time distributions of the aforementioned scenarios. The graphs 
indicate that the errors in those scenarios have minimal impact on travel time distribution among individual 
vehicles. This shows that the change in driving behavior is not significant enough to impact travel time. Note 
that in the case of low CAV market penetration, the impact of distance measurement errors on both traffic 
performance and travel time was insignificant. 
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Figure 26. Fundamental diagrams for distance measurement error scenarios at a high (70 percent)   

CAV market penetration rate. 
 

      
 
 

       
 

 
 

Figure 27. Travel time distribution for distance measurement error scenarios at a high (70 percent)  
CAV market penetration rate. 

 
Sensor Range Reduction Scenarios – Low AV Market Penetration (30 percent) 

As mentioned in the methodology section, sensor range drops can affect the maximum speed at which 
automated vehicles travel. The scenario set summarized in Table 27 evaluates the impact of sensor range 
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reductions on overall traffic performance in the case of low automation (30 percent AV). Three range 
reductions were tested: 10 percent, 20 percent, and 30 percent. 

Table 27. Sensor range reduction scenarios in the low (30 percent) AV market penetration 
condition (percent). 

Scenario Description 
Isolated-
Human 

Isolated-
Automated 

Sensor Range Drop 
(𝜀R) 

Low AV - Perfect Sensor Performance 70 30 0 
Low AV – 10% reduction 70 30 10 
Low AV – 20% reduction 70 30 20 
Low AV – 30% reduction 70 30 30 

Source: FHWA 2018 

Figure 28 shows the fundamental diagrams for the range reduction scenarios in low AV market penetration 
conditions (30 percent). The graphs show that range detection has insignificant impact on traffic throughput. 
This is because human-driven vehicles are dominating and are not affected by range drop. However, the 
graphs also indicate higher traffic stability (less scatter) above the 20 percent reduction range. This is due 
to the lower overall speed of the traffic and less aggressive driving. Figure 29 shows the travel time 
distributions for the same scenarios. Those graphs indicate that range reductions greater than 20 percent 
can lead to longer travel time due to lower speeds among AVs, as seen from the distribution shift to higher 
values (right). 

      

 

       

 

 
Figure 28. Fundamental diagrams for sensor range reduction scenarios at a low (30 percent) AV 

market penetration rate. 
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Figure 29. Travel time distribution for sensor range reduction scenarios at a low (30 percent) AV 
market penetration rate. 

 
Sensor Range Reduction Scenarios – High AV Market Penetration (70 percent) 

The scenarios summarized in Table 28 evaluate the impact of sensor range reductions in highly automated 
traffic streams. Three reduction rates were tested: 10 percent, 20 percent, and 30 percent. 

Table 28. Sensor range reduction scenarios in the high (70 percent) AV market penetration 
condition (percent). 

Scenario Description Isolated-
Human 

Isolated-
Automated 

Sensor Range Drop 
(𝜀R) 

High AV - Perfect Sensor Performance 30 70 0 
High AV – 10% reduction 30 70 10 
High AV – 20% reduction 30 70 20 
High AV – 30% reduction 30 70 30 

Source: FHWA 2018 

Figure 30 shows the fundamental diagrams for the sensor range reduction scenarios in high AV market 
penetration conditions (70 percent). Those graphs show that range drops greater than 20 percent lead to 
reductions in traffic flow throughput due to lower speeds of automated vehicles. The reduction in throughput 
is more significant than traffic with low AV penetration as the high number of vehicles is significant enough 
to change the overall performance of traffic. The overall reduction in speed, however, can lead to better 
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b) 10 percent
 

 reduction. 

c) 20 percent
 

 reduction. 

© 2018 Hani Mahmassani 

d) 30 percent reduction. 
 



 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  137 

stability (less scatter) due to less aggressive driving. Figure 31 shows the travel time distribution of the 
same scenarios. The graph shows that sensor range drops can lead to higher travel time as seen in the 
distribution shift towards higher values (right) which confirms the lower overall vehicle speed as a result of 
the sensor range drop. 

 

   

 

   

 

 
Figure 30. Fundamental diagrams for sensor range reduction scenarios at a high (70 percent) AV 

market penetration rate. 
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Figure 31. Travel time distribution for sensor range reduction scenarios at a high (70 percent) AV 
market penetration rate. 

 
Sensor Range Reduction Scenarios – High AV Market Penetration (70 percent) 

The scenario set summarized in Table 29 evaluates the impact of sensor range reduction for highly 
connected and automated traffic streams (70 percent CAV). As mentioned in the methodology section, 
CAVs have a higher range than AVs due to the additional information received by CAVs through wireless 
telecommunication. The scenarios tests three reduction rates: 10 percent, 20 percent, and 30 percent.  

Table 29 Sensor range reduction scenarios in the high (70 percent) AV market penetration 
condition (percent). 

Scenario Description 
Isolated-
Human 

Connected-
Automated 

Sensor Range Drop 
(𝜀R) 

High CAV - Perfect Sensor Performance 30 70 0 
High CAV – 10% reduction 30 70 10 
High CAV – 20% reduction 30 70 20 
High CAV – 30% reduction 30 70 30 

Source: FHWA 2018 
 
Figure 32 shows the fundamental diagrams for the sensor range reduction scenarios in high CAV market 
penetration conditions (70 percent). The plots show that range reduction for CAVs has insignificant impact 
on the traffic throughput and stability. Since CAVs have a higher detection range than AV, the reduced range 
is still higher than the minimum range required to achieve speed limits. Therefore, the speed of vehicles 
has not changed. This is also confirmed by Figure 33 which shows that travel time distributions have not 
changed as a result of the range drop, indicating that vehicle speed has not changed. As for the low CAV 
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scenarios (30 percent), range has insignificant impact on traffic throughput and travel time due to the low 
number of CAVs (dominating human driving behavior). 

  

   

 

      

 

 

Figure 32. Fundamental diagrams for sensor range reduction scenarios at a high (70 percent) AV 
market penetration rate. 
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Figure 33. Travel time distribution for sensor range reduction scenarios at a high (70 percent) CAV 
market penetration rate. 

Impact of Automated Truck Platooning in Mixed Traffic Flow 
Truck platooning links multiple trucks in a convoy using wireless telecommunications and automated control 
systems. The algorithm assigns one truck to be designated as the leader and others in the convoy adjust 
their speeds to that of the leading vehicle, following each other at short distances. Truck platooning can rely 
on CACC technology to control longitudinal movement by adjusting the speeds of following trucks or, as 
envisioned for future systems, use fully automated driving functions (longitudinal and lateral) that rely on 
wireless telecommunications and vehicle sensors. 

Truck platooning has potential safety, mobility, and sustainability benefits. In terms of safety, platooning can 
improve the reaction of connected trucks over individual trucks as the platooned vehicles can adjust their 
speeds to that of the leading vehicle, minimizing the likelihood of an accident due to a slower reaction. This 
can improve further if the leading truck is automated and uses multiple sensors to detect traffic around it. 
As for mobility benefits, truck platooning can improve the efficiency of operating trucks on the road, which 
can improve the traffic state. Finally, moving at short distances reduces air drag between trucks significantly 
and therefore improves fuel consumption, lowers emissions, and reduces overall costs. 

As the percentage of trucks on some interstates can be significant, trucks can be a significant factor in the 
performance of mixed traffic as a whole. This case study focuses on modeling truck platooning in a mixed 
connected environment to evaluate the overall operational performance. To do this, a modeling framework 
of automated truck platooning developed by PATH at the University of California, Berkeley (135) was 
adopted and integrated into the testbed’s microsimulation platform. The modeling framework is discussed 
in the methodology section below. 

Methodology 
The truck platooning modeling framework adopted in this study was developed by PATH at the University 
of California, Berkeley (135; 136). This framework has three distinct driving behaviors for automated trucks: 
1) cruise control, 2) adaptive cruise control, and 3) cooperative adaptive cruise control. Below is a 
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description of each of those behaviors. The model parameters were calibrated using experimental data 
collected by researchers at PATH (135; 136). 

Cruise Control (CC) 

The cruise control car-following behavior captures automated truck driving in free flow conditions (no 
leading vehicle) or when a time gap to a leading vehicle is above a certain threshold (2.5 seconds). Through 
this control logic, an automated truck maintains a desired speed—in this case, the freeway speed limit. The 
car following formula is as follows: 

 a𝐴u𝐴𝐴(t) = kp [vref(t − 1) − v(t − 1)]  [17] 

Where kp is a model parameter (0.3907) 

Adaptive Cruise Control (ACC) 

The adaptive cruise control logic is activated when an automated truck is following another vehicle outside 
of a truck platoon. Following this logic, an automated truck aims to maintain a desired time gap (2 seconds) 
between itself and the leading vehicle. This logic applies to isolated-automated trucks or connected trucks 
driving outside a platoon. The car following model is as follows: 

 a𝐴u𝐴𝐴(t) = k1 [d(t − 1) − t𝑑𝑑𝑑𝑑𝑑𝐴CCv(t − 1)] +  k2[vp𝑝𝑝𝑝𝑝𝑝𝑝(t − 1) − v(t − 1)] [18] 

Where  is the desired time gap in ACC mode (2 sec),  is speed of the preceding vehicle at 
time , and are model parameters (0.0561 and 0.3393 respectively). 

t𝑑es𝐴CC vprec(t − 1)
(t − 1) k1 k2

Cooperative Adaptive Cruise Control (CACC) 

Cooperative adaptive cruise control is activated when a connected-automated truck is following another 
connected-automated truck in a platoon. With this control, the truck maintains a desired time gap in a 
platoon (1.5 seconds), which is shorter than the desired time gap of adaptive cruise control. Note that if a 
connected truck is outside a platoon (following a non-connected truck), the connected truck would then 
follow the ACC logic described above. The CACC car following formula is as follows: 

 a𝐴u𝐴𝐴(t) = kp𝑒𝑒(t − 1) + k𝑑𝑒̇𝑒(t − 1) [19] 

Where 𝑒𝑒(t − 1) is a measure of deviation from the CACC desired time gap, t𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the desired time gap 
for CACC (1.5 seconds),  𝑒̇𝑒(t − 1) is derivative of 𝑒𝑒(t − 1), and kpand k𝑑 are model parameters (0.0074 
and 0.0805 respectively). 

Truck Platoon Formation 

An opportunistic platoon formation strategy is considered in this case study. An opportunistic formation 
refers to connected trucks forming platoons whenever possible without inducing any intervention such as 
pushing certain trucks to change a lane to form a platoon or using reserved lanes. Through this strategy, 
truck platooning behavior is activated whenever a connected truck is following another connected truck. 
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Impact of Automated Truck Platooning in Mixed Traffic Scenarios – Low 
Automation (30 percent AV) Condition 
The scenarios summarized in Table 30 evaluate the impact of automated truck platooning at low AV market 
penetration (30 percent). The scenarios test platooning for two truck percentages of total traffic: 10 percent 
and 20 percent. The rest is a mix of AVs and human-driven cars. 

Table 30. Automated truck platooning in mixed traffic scenarios – low (30 percent) AV market 
penetration condition (percent). 

Scenario Description 

Isolated-
Manual 

Car 

Isolated-
Automated 

Car 

Isolated-
Automated 

Truck 

Connected-
Automated 

Truck 
10% Trucks – No Platooning 60 30 10 0 
10% Trucks – Active Platooning 60 30 0 10 
20% Trucks – No Platooning 50 30 20 0 
20% Trucks – Active Platooning 50 30 0 20 

Source: FHWA 2018 
 
Figure 34 shows the fundamental diagrams of truck platooning scenarios in low AV market penetration 
conditions (30 percent). The diagrams show that in both the 10 percent and 20 percent truck percent cases, 
truck platooning can lead to improvements in traffic throughput (the right two diagrams). This can be caused 
by the homogenous and less aggressive driving behavior of trucks in platoons. This can also be due to 
higher traffic density as connected trucks follow each other at shorter distances. The impact of truck 
platooning on overall travel time, however, is insignificant, as seen in Figure 35. Overall travel time refers 
to the travel time distribution of all vehicles in traffic stream (trucks and cars). This is likely due to the small 
number of trucks in traffic stream and the opportunistic platoon formation strategy as discussed in the 
Methodology section above (a truck activates platooning whenever it follows another connected truck). 
Looking at the travel time distribution of trucks only, Figure 36, results show that truck platooning can lead 
to slightly higher travel times for trucks. This can be a result of the less aggressive driving within the truck 
platoons. On the other hand, truck platooning has no significant impact on the travel time distribution for 
cars (the majority of traffic stream) as shown in Figure 37. The lack of change in the overall travel time 
distribution indicates insignificant changes in traffic speed, which confirms that the small improvement in 
throughput is due to greater traffic density (trucks following each other at smaller distances). 

   

 
a) 10 percent trucks – no 

platooning. 
b) 10 percent trucks – active 

platooning. 
 



 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  143 

   

 

 

Figure 34. Fundamental diagrams for truck platooning scenarios at at a low (30 percent) AV market 
penetration rate. 

 
 

   

 

     

 

 

Figure 35. Overall travel time distribution for truck platooning scenarios at a low (30 percent) AV 
market penetration rate. 
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Figure 36. Truck travel time distribution for truck platooning scenarios at a low (30 percent) AV 
market penetration rate. 
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Figure 37. Car travel time distribution for truck platooning scenarios at a low (30 percent) AV 
market penetration rate. 

Impact of Automated Truck Platooning in Mixed Traffic Scenarios – High 
Traffic Automation (70 percent AV) 
The scenarios summarized in Table 31 evaluate the impact of automated truck platooning at high AV market 
penetration (70 percent). The scenarios test platooning for two truck percentages of total traffic: 10 percent 
and 20 percent. The rest is a mix of AVs and human-driven cars. 

Table 31. Automated truck platooning in mixed traffic scenarios – high (70 percent) AV market 
penetration condition (percent). 

Scenario Description 

Isolated-
Manual 

Car 

Isolated-
Automated 

Car 

Isolated-
Automated 

Truck 

Connected-
Automated 

Truck 
10% Trucks – No Platooning 20 70 10 0 
10% Trucks – Active Platooning 20 70 0 10 
20% Trucks – No Platooning 10 70 20 0 
20% Trucks – Active Platooning 10 70 0 20 

Source: FHWA 2018 
 
Figure 38 shows the fundamental diagrams for truck platooning scenarios in the high AV market penetration 
condition (70 percent). Similar to the low automation case, the diagrams show that activating truck 
platooning can lead to higher traffic throughput. This is because platooned vehicles do not drive 
aggressively and because they maintain a shorter time gap. Figure 39 shows the travel time distributions 
for the same scenarios. The plots indicate that truck platooning has an insignificant impact on the overall 
travel time of individual vehicles (no significant shifts in distributions). The small number of trucks in the 
traffic stream (< 20 percent) is likely the reason for this insignificant change in overall travel time. Looking 
more deeply into the trucks-only travel time distributions in Figure 40, the plots show that platooning can 
actually lead to greater travel time for trucks. This is likely due to the less aggressive driving behavior of 
platooned vehicles, which also maintaining shorter time gaps between each other compared to non-
automated trucks. Figure 41 illustrates the cars-only travel time distribution. The plots show that platooning 
has insignificant impact on travel time for cars. This indicates that the changes in truck driving behavior is 
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not significant enough to impact the car driving behavior and their travel time as the number of trucks is 
small in the traffic stream (< 20 percent). The insignificant change in travel time (and speed) also indicates 
that the small increase in traffic throughput is due to higher density (trucks within platoons driving at shorter 
distances) and not speed itself. While the general trends in the case of high traffic automation is similar to 
the low traffic automation case discussed previously, the overall throughput is higher and travel time is lower 
in the case of high automation due to the larger market penetration of AVs. 

  

 

 

 

 

Figure 38. Fundamental diagrams for truck platooning scenarios at a high (70 percent) AV market 
penetration. 
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Figure 39. Overall travel time distribution for truck platooning scenarios at a high (70 percent) AV 
market penetration rate.  

 

  

 

 

 

 

Figure 40. Truck travel time distribution for truck platooning scenarios at a high (70 percent) AV 
market penetration rate. 
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Figure 41. Car travel time distribution for truck platooning scenarios at a high (70 percent) AV 
market penetration rate. 

Truck Platoon Size Analysis 
Figure 42 shows the platoon size distribution when trucks make up 10 percent and 20 percent of traffic 
under both the low and high market penetration rates for automated vehicles. The plots show that, when 
10 percent of traffic is made up of trucks, the platoon size is 2-3 vehicles, while the majority of connected 
trucks (90 percent) are not in active platoons. Part of the reason for the small sizes is due to the 
opportunistic nature of platoon formation in this case study where connected trucks activate platooning 
behavior only if they follow other connected trucks (i.e., platoons are not predefined). The other part of the 
reason is due to the small number of trucks in the traffic stream, which makes it unlikely that a connected 
truck would be following another connected truck. The lower two plots of Figure 42 show platoon size when 
20 percent of traffic is made up of trucks. In those cases, trucks form platoons more often than in the 10 
percent composition scenario, and the range is 2-4 vehicles. This is due to the larger number of trucks in 
the traffic stream and, therefore, the higher likelihood of platoon formation.  
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Figure 42. Truck platoon size for 10 percent/20 percent trucks at low (30 percent) and high (70 
percent) AV market penetration levels. 

Truck Platoon Duration Analysis 
Figure 43 shows the platoon duration distribution when trucks make up 10 percent and 20 percent of traffic 
under both the low and high market penetration rates for automated vehicles. Duration in this context refers 
the numbers of seconds for which a platoon is moving in the traffic stream before it breaks (i.e., a truck 
leaves a platoon). The plots show that, generally, most platoons break after 50 seconds (220 second is the 
duration required to cross the study segment at free flow speed). This is due to the small number of trucks 
in the traffic stream (< 20 percent), the opportunistic nature of platoon formation, and the relatively short 
travel distance of this urban corridor. Plots 43c and 43d show that platoon duration is slightly longer when 
trucks make up 20 percent of traffic due to the larger number of trucks in the stream, but still, duration 
largely remains less than 50 seconds. 
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 Figure 43. Truck platoon duration for 10 percent/20 percent trucks at low (30 percent) and high (70 

percent) AV market penetration levels. 

 

© 2018 Hani Mahmassani 

a) 10 percent trucks – low 
 automation (30 percent AV). 

b) 10 percent trucks – high 
automation (70 

 
percent AV). 

c) 20 percent trucks – low 
automation (30 

 
percent AV). 

d) 20 percent trucks – high 
automation (70 

 
percent AV). 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Development of an AMS Framework for Connected and Automated Vehicle Systems |  151 

Chapter 11. Lessons Learned and Next 
Steps

This project report presents a comprehensive methodological framework for evaluating the strategic and 
operational impacts of CAV systems. The framework builds on the user needs and system requirements 
identified in previous tasks. The framework is comprised of four interdependent components: 

• Supply Changes: to analyze the emergence of new mobility options enabled by CAVs and the
changes incurred by the new technology to the infrastructure. This would mainly include 1) the
emergence of new mobility options and 2) changes to the infrastructure to enable wireless
telecommunications.

• Demand Changes: to evaluate CAV impacts on 1) activity patterns such as the sequencing of
activities or vehicle ownership and 2) travel choices such as the mode of choice, route, and departure
time.

• Operational Performance: to evaluate the impacts of the technology on the performance of
transportation systems such as increased capacity and improved travel time. These sets of models
would capture the new driving behaviors among CAV systems, the impact of wireless
telecommunication and information flow, and the heterogeneous traffic interactions among the
different behaviors and control systems.

• Network Integration: to capture the multi-agent interactions at the network level and integrate the
demand, supply, and operational components.

As a first step toward developing the methodological framework, the study team conducted a 
comprehensive review of prior and current work. The review of supply-related impacts of CAVs into the 
traffic stream focused on the operation of shared-automated-vehicles (SAV) as a new mobility option that 
CAV technology makes possible. The main findings of the reviewed papers, which are still largely 
speculative, suggest that SAVs can reduce individual travel times compared to personal vehicles when fleet 
size is optimized and dynamic vehicle allocation is applied. Furthermore, the studies suggest that SAVs can 
replace multiple personally owned vehicles, but the optimal number depends on demand and system 
configuration. As for the AMS tools used in this area, recent developments are beginning to produce 
heuristics and simple strategies to operate and manage emerging mobility fleet services with CAVs; while 
the work is in the early stages, it is advancing rapidly as the involvement of researchers from different 
disciplines grows. 

On the demand and behavioral change side, the reviewed papers suggest that adoption of the new 
technology will be gradual and that high market penetration is not likely before 2060. Such predictions must 
be taken with considerable caution, as they depend on many assumptions regarding market trends and 
industry offerings. Furthermore, early adopters of the technology will likely be young, educated, and affluent 
adults. In terms of mode shift, results suggest that the introduction of AVs will likely cause a shift from public 
transit and walking for short distance travel, and a shift from air travel for longer distances. As for vehicle 
ownership, SAV service can significantly reduce the number of vehicles owned if accepted by the public. 
With respect to VMT impacts, all results suggest that the new technology is likely to increase the total VMT 
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due to the greater accessibility of the new mode. However, the extent to which VMT will increase differs 
among the studies due to the different assumptions about the operation and specifications of the CAV 
systems. As for AMS tool development to evaluate demand changes, existing integrated ABM-DTA 
structures are amenable to incorporate such CAV impacts, provided they are conceived as tour-based 
(rather than trip based), enable multi-class equilibration including system optimum for certain AV tours, and 
recognize user heterogeneity.  

Regarding operational performance, the reviewed studies suggest that CAV systems have a positive impact 
on the stability and rate of traffic flow that is proportional to CAV market penetrations. Furthermore, the new 
technology can potentially improve traffic control algorithms such as speed harmonization. The topic of 
CAVs and their potential impact on traffic, mobility, and urban and regional systems has captured the 
attention of many researchers from all over the world. The number of studies on this topic has rapidly 
increased in recent years, as reflected in journal publications and conference presentations. Work to date 
has primarily helped to identify and frame the many complex issues that arise in evaluating the full impacts 
of this new technological paradigm as well as to point to some of the difficulties and limitations in modeling 
these impacts in a realistic and robust manner. Recent special-purpose model developments at the 
operational level are already providing considerable insight on various traffic operational aspects of mixed 
traffic with CAVs, although they do not provide a sufficient capability to support traffic control and design 
decisions. In terms of regional impacts, the use of microsimulation experiments to generate macroscopic 
relations (e.g., fundamental diagrams) for individual facilities, which may then be used in mesoscopic 
network simulation tools, provides a promising direction for quick-starting investigations of CAV impacts on 
a large regional network scale.  

Building on the comprehensive review of prior and current work, a gap analysis of current CAV AMS 
capabilities was conducted. The analysis identified three types of gaps: methodological, data-related, and 
implementation-related. Methodological gaps involved key CAV system characteristics that were missing 
from most existing CAV AMS capabilities, such as an abstract representation of sensor performance or 
wireless telecommunications. Data-related gaps mainly involve the lack of actual data to calibrate and 
validate existing CAV models, such as the data required to validate the driving behavior of AVs designed to 
serve different purposes. Finally, implementation-related gaps mainly involved the integration of different 
framework components within a comprehensive CAV AMS system. 

The developed CAV AMS framework addresses the identified gaps in different ways (4)(4)(4)(4)(4)(4): 

• Methodological gaps were addressed by integrating the missing CAV-related features into the
different components of the framework.

• Data-related gaps were addressed by allowing the different models in the CAV AMS system to be
replaced/calibrated once new data becomes available.

• Implementation gaps were addressed by integrating the demand, supply, and operational
performance models into a comprehensive framework of a CAV AMS platform.

Addressing most of these gaps, especially those related to data, requires field studies to be conducted 
(using prototype vehicles) to collect actual data on the behavior and interactions of CAV systems or 
analyzing data already collected in prior studies. Other options include using driving simulators or reaching 
out to private companies that are willing to share the data they already collected. The latter may not be an 
easy option since the private companies that are developing CAV systems are very protective of their data. 
Addressing methodological gaps mainly requires modifying existing models to include missing key CAV 
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characteristics or building entirely new ones. Finally, addressing implementation-related gaps mainly 
requires building the CAV AMS system as a comprehensive modeling platform. 

To conduct a proof-of-concept test of a prototype CAV AMS framework, a case study focusing on the 
operational performance impacts of CAV systems was selected. This case study focuses on the 
performance impacts of CAV systems in a mixed-traffic environment (i.e., CAVs, human drivers, and trucks) 
at different market penetration ratesof CV, AV, and CAV . The study uses an integrated traffic-
telecommunication microsimulation tool that was developed at Northwestern University as a testbed. The 
microsimulation platform is a special-purpose tool for simulating mixed-traffic conditions on freeways in a 
connected environment. It integrates four distinctive driving behaviors: isolated-manual, connected-manual 
vehicles (CV), isolated-automated vehicles (AV), and connected-automated vehicle (CAV). 

Using the aforementioned testbed, three sets of scenarios were evaluated. Those scenarios analyze the 
following: 

• The performance of mixed traffic flow.

• The impact of AV sensor performance on mixed traffic flow.

• The impact of automated truck platooning on mixed traffic flow.

The mixed traffic flow simulations show that connectivity and automated driving can improve traffic flow 
throughput, stability, and travel time at high market penetration rates. The AV sensor performance 
simulations show that distance measurement error has insignificant impact on the performance of traffic 
flow in the case of the low AV market penetration rate. Automated truck platooning simulations show that 
active platooning can lead to higher traffic throughput due to trucks driving at shorter distances in platoons. 
Platooning, however, seems to have insignificant impact on the overall travel time. The truck platoons 
formed under the assumed opportunistic platoon formation strategy are small (2-4 vehicles) and of short 
duration (mostly less than 50 sec). Under the opportunistic strategy, connected trucks activate platooning 
behavior only if they are following other connected trucks. Due to the generally small number of trucks on 
highways (< 20 percent), forming platoons under this strategy can be difficult, especially in a short urban 
corridor. 

Recommended Next Steps 
The logical next step in this effort is to develop an AMS platform that builds on the methodological framework 
introduced in this project. While current AMS tools provide a step in the right direction in terms of evaluating 
CAV impacts, they primarily focus on one particular aspect of the potential impacts, such as operational 
impacts. CAV impacts, however, are far reaching on multiple levels, and evaluating those impacts requires 
an integrated approach at the network level. Such development is currently at an early stage, and much 
more work needs to be done in this area. Another area that is worth pursuing as a next step is collecting 
actual data to calibrate the different CAV-related models. On the demand side, for example, most models 
lack actual data that describes travel behavior changes among households due to the potential for allowing 
travelers to multitask while being transported by an AV. On the operational side, the data to support 
modeling the different driving behaviors of CAV systems and their interactions with human drivers or 
vulnerable road users is very limited. Collecting more representative data from actual site experiments 
would be essential to model CAV systems accurate and to evaluate CAV impacts.  
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The gaps identified and discussed in chapter 7 provide the list of critical areas for future work in the four 
key areas of demand, supply, operational performance, and network integration. Each one of these could 
be the basis of an extensive, full-fledged research program. However, agencies’ need for AMS tools to help 
plan for the advent of CAVs in their communities are more immediate and need to be met with improvements 
to existing platforms using largely available data. Accordingly, the research team believes that one of the 
most productive areas for R&D is in studying how to address the demand and network-level aspects of 
CAVs. These are currently subject to the greatest uncertainty regarding adoption and use of the new 
technology and new services likely to be offered by third parties. While the framework addressed all aspects 
with the same general level of detail, the case study in chapters 9 and 10 focused almost exclusively on 
operational aspects. It would be highly desirable, and of prime interest to stakeholders and agencies, to 
conduct a similar case study that focuses on the demand and network impacts of new CAV technologies 
and related mobility services instead.  

The location for such a case study would be a large urban or metropolitan network, and the research would 
address household adjustments based on CAV availability, both as household-controlled assets as well as 
in a mobility-as-service scenario based on shared-fleet options. More importantly, the case study would 
need to capture interactions among these various effects and examine implications in a network context, 
including multimodal travel options, particularly public transit services in the study area. The case study 
would also need to consider potential equity concerns across user groups as well as across various 
geographical areas. 
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